-
Notifications
You must be signed in to change notification settings - Fork 183
/
Copy pathhypothesis_inference.py
205 lines (147 loc) · 5.84 KB
/
hypothesis_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from helpers.probability import normal_cdf, inverse_normal_cdf
import math, random
def normal_approximation_to_binomial(n, p):
"""finds mu and sigma corresponding to a Binomial(n, p)"""
mu = p * n
sigma = math.sqrt(p * (1 - p) * n)
return mu, sigma
#####
#
# probabilities a normal lies in an interval
#
######
# the normal cdf _is_ the probability the variable is below a threshold
normal_probability_below = normal_cdf
# it's above the threshold if it's not below the threshold
def normal_probability_above(lo, mu=0, sigma=1):
return 1 - normal_cdf(lo, mu, sigma)
# it's between if it's less than hi, but not less than lo
def normal_probability_between(lo, hi, mu=0, sigma=1):
return normal_cdf(hi, mu, sigma) - normal_cdf(lo, mu, sigma)
# it's outside if it's not between
def normal_probability_outside(lo, hi, mu=0, sigma=1):
return 1 - normal_probability_between(lo, hi, mu, sigma)
######
#
# normal bounds
#
######
def normal_upper_bound(probability, mu=0, sigma=1):
"""returns the z for which P(Z <= z) = probability"""
return inverse_normal_cdf(probability, mu, sigma)
def normal_lower_bound(probability, mu=0, sigma=1):
"""returns the z for which P(Z >= z) = probability"""
return inverse_normal_cdf(1 - probability, mu, sigma)
def normal_two_sided_bounds(probability, mu=0, sigma=1):
"""returns the symmetric (about the mean) bounds
that contain the specified probability"""
tail_probability = (1 - probability) / 2
# upper bound should have tail_probability above it
upper_bound = normal_lower_bound(tail_probability, mu, sigma)
# lower bound should have tail_probability below it
lower_bound = normal_upper_bound(tail_probability, mu, sigma)
return lower_bound, upper_bound
def two_sided_p_value(x, mu=0, sigma=1):
if x >= mu:
# if x is greater than the mean, the tail is above x
return 2 * normal_probability_above(x, mu, sigma)
else:
# if x is less than the mean, the tail is below x
return 2 * normal_probability_below(x, mu, sigma)
def count_extreme_values():
extreme_value_count = 0
for _ in range(100000):
num_heads = sum(1 if random.random() < 0.5 else 0 # count # of heads
for _ in range(1000)) # in 1000 flips
if num_heads >= 530 or num_heads <= 470: # and count how often
extreme_value_count += 1 # the # is 'extreme'
return extreme_value_count / 100000
upper_p_value = normal_probability_above
lower_p_value = normal_probability_below
##
#
# P-hacking
#
##
def run_experiment():
"""flip a fair coin 1000 times, True = heads, False = tails"""
return [random.random() < 0.5 for _ in range(1000)]
def reject_fairness(experiment):
"""using the 5% significance levels"""
num_heads = len([flip for flip in experiment if flip])
return num_heads < 469 or num_heads > 531
##
#
# running an A/B test
#
##
def estimated_parameters(N, n):
p = n / N
sigma = math.sqrt(p * (1 - p) / N)
return p, sigma
def a_b_test_statistic(N_A, n_A, N_B, n_B):
p_A, sigma_A = estimated_parameters(N_A, n_A)
p_B, sigma_B = estimated_parameters(N_B, n_B)
return (p_B - p_A) / math.sqrt(sigma_A ** 2 + sigma_B ** 2)
##
#
# Bayesian Inference
#
##
def B(alpha, beta):
"""a normalizing constant so that the total probability is 1"""
return math.gamma(alpha) * math.gamma(beta) / math.gamma(alpha + beta)
def beta_pdf(x, alpha, beta):
if x < 0 or x > 1: # no weight outside of [0, 1]
return 0
return x ** (alpha - 1) * (1 - x) ** (beta - 1) / B(alpha, beta)
if __name__ == "__main__":
mu_0, sigma_0 = normal_approximation_to_binomial(1000, 0.5)
print("mu_0", mu_0)
print("sigma_0", sigma_0)
print("normal_two_sided_bounds(0.95, mu_0, sigma_0)", normal_two_sided_bounds(0.95, mu_0, sigma_0))
print()
print("power of a test")
print("95% bounds based on assumption p is 0.5")
lo, hi = normal_two_sided_bounds(0.95, mu_0, sigma_0)
print("lo", lo)
print("hi", hi)
print("actual mu and sigma based on p = 0.55")
mu_1, sigma_1 = normal_approximation_to_binomial(1000, 0.55)
print("mu_1", mu_1)
print("sigma_1", sigma_1)
# a type 2 error means we fail to reject the null hypothesis
# which will happen when X is still in our original interval
type_2_probability = normal_probability_between(lo, hi, mu_1, sigma_1)
power = 1 - type_2_probability # 0.887
print("type 2 probability", type_2_probability)
print("power", power)
print()
print("one-sided test")
hi = normal_upper_bound(0.95, mu_0, sigma_0)
print("hi", hi) # is 526 (< 531, since we need more probability in the upper tail)
type_2_probability = normal_probability_below(hi, mu_1, sigma_1)
power = 1 - type_2_probability # = 0.936
print("type 2 probability", type_2_probability)
print("power", power)
print()
print("two_sided_p_value(529.5, mu_0, sigma_0)", two_sided_p_value(529.5, mu_0, sigma_0))
print("two_sided_p_value(531.5, mu_0, sigma_0)", two_sided_p_value(531.5, mu_0, sigma_0))
print("upper_p_value(525, mu_0, sigma_0)", upper_p_value(525, mu_0, sigma_0))
print("upper_p_value(527, mu_0, sigma_0)", upper_p_value(527, mu_0, sigma_0))
print()
print("P-hacking")
random.seed(0)
experiments = [run_experiment() for _ in range(1000)]
num_rejections = len([experiment
for experiment in experiments
if reject_fairness(experiment)])
print(num_rejections, "rejections out of 1000")
print()
print("A/B testing")
z = a_b_test_statistic(1000, 200, 1000, 180)
print("a_b_test_statistic(1000, 200, 1000, 180)", z)
print("p-value", two_sided_p_value(z))
z = a_b_test_statistic(1000, 200, 1000, 150)
print("a_b_test_statistic(1000, 200, 1000, 150)", z)
print("p-value", two_sided_p_value(z))