forked from ZFTurbo/Music-Source-Separation-Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
182 lines (152 loc) · 7.58 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import numpy as np
import soundfile as sf
import torch.nn as nn
# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config
import warnings
warnings.filterwarnings("ignore")
def run_folder(model, args, config, device, verbose=False):
start_time = time.time()
model.eval()
all_mixtures_path = glob.glob(args.input_folder + '/*.*')
all_mixtures_path.sort()
print('Total files found: {}'.format(len(all_mixtures_path)))
instruments = config.training.instruments.copy()
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
os.makedirs(args.store_dir, exist_ok=True)
if not verbose:
all_mixtures_path = tqdm(all_mixtures_path, desc="Total progress")
if args.disable_detailed_pbar:
detailed_pbar = False
else:
detailed_pbar = True
for path in all_mixtures_path:
print("Starting processing track: ", path)
if not verbose:
all_mixtures_path.set_postfix({'track': os.path.basename(path)})
try:
mix, sr = librosa.load(path, sr=44100, mono=False)
except Exception as e:
print('Cannot read track: {}'.format(path))
print('Error message: {}'.format(str(e)))
continue
# Convert mono to stereo if needed
if len(mix.shape) == 1:
mix = np.stack([mix, mix], axis=0)
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mono = mix.mean(0)
mean = mono.mean()
std = mono.std()
mix = (mix - mean) / std
if args.use_tta:
# orig, channel inverse, polarity inverse
track_proc_list = [mix.copy(), mix[::-1].copy(), -1. * mix.copy()]
else:
track_proc_list = [mix.copy()]
full_result = []
for mix in track_proc_list:
waveforms = demix(config, model, mix, device, pbar=detailed_pbar, model_type=args.model_type)
full_result.append(waveforms)
# Average all values in single dict
waveforms = full_result[0]
for i in range(1, len(full_result)):
d = full_result[i]
for el in d:
if i == 2:
waveforms[el] += -1.0 * d[el]
elif i == 1:
waveforms[el] += d[el][::-1].copy()
else:
waveforms[el] += d[el]
for el in waveforms:
waveforms[el] = waveforms[el] / len(full_result)
# Create a new `instr` in instruments list, 'instrumental'
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
if 'instrumental' not in instruments:
instruments.append('instrumental')
# Output "instrumental", which is an inverse of 'vocals' or the first stem in list if 'vocals' absent
waveforms['instrumental'] = mix_orig - waveforms[instr]
for instr in instruments:
estimates = waveforms[instr].T
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = estimates * std + mean
file_name, _ = os.path.splitext(os.path.basename(path))
if args.flac_file:
output_file = os.path.join(args.store_dir, f"{file_name}_{instr}.flac")
subtype = 'PCM_16' if args.pcm_type == 'PCM_16' else 'PCM_24'
sf.write(output_file, estimates, sr, subtype=subtype)
else:
output_file = os.path.join(args.store_dir, f"{file_name}_{instr}.wav")
sf.write(output_file, estimates, sr, subtype='FLOAT')
time.sleep(1)
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
def proc_folder(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of bandit, bandit_v2, bs_roformer, htdemucs, mdx23c, mel_band_roformer, scnet, scnet_unofficial, segm_models, swin_upernet, torchseg")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
parser.add_argument("--input_folder", type=str, help="folder with mixtures to process")
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided")
parser.add_argument("--disable_detailed_pbar", action='store_true', help="disable detailed progress bar")
parser.add_argument("--force_cpu", action = 'store_true', help="Force the use of CPU even if CUDA is available")
parser.add_argument("--flac_file", action = 'store_true', help="Output flac file instead of wav")
parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24', help="PCM type for FLAC files (PCM_16 or PCM_24)")
parser.add_argument("--use_tta", action='store_true', help="Flag adds test time augmentation during inference (polarity and channel inverse). While this triples the runtime, it reduces noise and slightly improves prediction quality.")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print('CUDA is available, use --force_cpu to disable it.')
device = "cuda"
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print("Using device: ", device)
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
if args.model_type in ['htdemucs', 'apollo']:
state_dict = torch.load(args.start_check_point, map_location=device, weights_only=False)
# Fix for htdemucs pretrained models
if 'state' in state_dict:
state_dict = state_dict['state']
# Fix for apollo pretrained models
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
else:
state_dict = torch.load(args.start_check_point, map_location=device, weights_only=True)
model.load_state_dict(state_dict)
print("Instruments: {}".format(config.training.instruments))
# in case multiple CUDA GPUs are used and --device_ids arg is passed
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids = args.device_ids)
model = model.to(device)
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=True)
if __name__ == "__main__":
proc_folder(None)