-
Notifications
You must be signed in to change notification settings - Fork 12
/
predict.py
467 lines (380 loc) · 17.1 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import pandas as pd
import numpy as np
import argparse
import xgboost as xgb
from scipy.sparse import csr_matrix
from sklearn.preprocessing import normalize
from sklearn.model_selection import ParameterSampler
from sklearn.metrics import mean_absolute_error
from scipy import stats
import pickle
import sys
def compute_land_use_mix(entropy_stats):
entropy_zero = lambda x: stats.entropy(x) if np.sum(x) > 0 else np.nan
land_use_mixes = np.apply_along_axis(entropy_zero, 1, entropy_stats)
return land_use_mixes / np.log(entropy_stats.shape[1])
def weighted_avg_and_std(values, weights):
"""
Return the weighted average and standard deviation.
values, weights -- Numpy ndarrays with the same shape.
"""
average = np.average(values, weights=weights)
variance = np.average((values - average) ** 2, weights=weights) # Fast and numerically precise
return average.astype(np.float32), np.sqrt(variance).astype(np.float32)
def compute_age_mean_std(vec):
age_intervals = [
[1919, 1945],
[1946, 1960],
[1961, 1970],
[1971, 1980],
[1981, 1990],
[1991, 2000],
[2001, 2010],
]
age_mean_intervals = []
for low, high in age_intervals:
now = age_intervals[-1][1]
avg = float((now - low) + (now - high)) / 2.
age_mean_intervals.append(avg)
age_mean_intervals = np.array(age_mean_intervals)
age_means = np.zeros(len(vec))
age_stds = np.zeros(len(vec))
for i, f in enumerate(vec):
f[-2] += f[-1]
age_mean = 0
age_std_w = 0
if np.sum(f[1:-1]) > 0:
age_mean, age_std_w = weighted_avg_and_std(age_mean_intervals, f[1:-1])
age_means[i] = age_mean
age_stds[i] = age_std_w
np.place(age_stds, age_means == 0, np.nan) # only where means = 0
np.place(age_means, age_means == 0, np.nan)
return age_means, age_stds
def median_absolute_p_error(y_true, y_pred):
return np.median(np.abs(100 * (y_pred - y_true) / y_true))
def create_spatial_matrix(X, spatial_matrix):
mapping_sez_index = {k: i for i, k in enumerate(X.index.tolist())}
nrows = X.values.shape[0]
# transform spatial matrix in sez1, sez2, dist
sp = spatial_matrix.reset_index().values
rows = [mapping_sez_index[s[0]] for s in sp]
cols = [mapping_sez_index[s[1]] for s in sp]
dists = [d for _, _, d in sp]
S = csr_matrix((dists+dists, (rows+cols, cols+rows)), shape=(nrows, nrows), dtype=np.float32)
# Row normalization
S = normalize(S, norm='l1', axis=1)
return S
def train_validate_test_split_with_care(df, care_df, validate_percent=.15, test_percent=.15, seed=None, return_indexes=False):
# care is the dataframe with houses
np.random.seed(seed)
perm = np.random.permutation(care_df.index)
m = len(care_df.index)
validate_end = int(validate_percent * m)
test_end = int(test_percent * m) + validate_end
train_idxs = perm[test_end:]
val_idxs = perm[:validate_end]
test_idxs = perm[validate_end:test_end]
if return_indexes:
return train_idxs, val_idxs, test_idxs
validate = df.loc[val_idxs].copy()
test = df.loc[test_idxs].copy()
train = df.loc[train_idxs].copy()
return train, validate, test
def kfold(care_df, n_folds=5, shuffle=True, seed=None):
np.random.seed(seed)
perm = care_df.index.tolist()
if shuffle:
perm = np.random.permutation(perm)
num_samples = len(care_df.index)
fold_size = num_samples // n_folds
for i in range(1, n_folds):
current = (i-1)*fold_size
end = fold_size*i
if i == n_folds -1:
yield perm[:current], perm[current:]
else:
yield np.concatenate((perm[:current], perm[end:]), axis=0), perm[current:end]
def make_argument_parser():
"""
Creates an ArgumentParser to read the options for this script from
sys.argv
:return:
"""
parser = argparse.ArgumentParser(
description="Launch MCMC computation for crime"
)
parser.add_argument('--target', '-T',
help='Target variable', default='price', choices=['price'])
parser.add_argument('--njobs', '-J',
default=8, type=int)
parser.add_argument('--testcity', '-C',
default=None, type=str)
parser.add_argument('--gpu', default=None, type=int)
parser.add_argument('--gridsearch', dest='gridsearch', action='store_true')
parser.add_argument('--no-gridsearch', dest='gridsearch', action='store_false')
parser.add_argument('--cv', dest='cv', action='store_true')
parser.add_argument('--no-cv', dest='cv', action='store_false')
parser.add_argument('--save', dest='save', action='store_true')
parser.add_argument('--no-save', dest='save', action='store_false')
parser.add_argument('--neigh', dest='neigh', action='store_true')
parser.add_argument('--no-neigh', dest='neigh', action='store_false')
parser.add_argument('--open', dest='open', action='store_true', help="Include all indexes (non open ones)")
parser.add_argument('--no-open', dest='open', action='store_false', help="Use only open indexes")
parser.set_defaults(save=True, neigh=True, open=False, cv=False, gridsearch=False)
return parser
def main():
SEED = 42 # Just to replicate our final experiment
parser = make_argument_parser()
args = parser.parse_args()
print("PARAMETERS", args)
df_case = pd.read_parquet('data/generated_files/selling_houses.parquet')
df = pd.read_parquet('data/generated_files/dataset_dsaa_release.parquet')
if args.neigh:
print("COMPUTING NEIGHBORHOOD FEATURES")
# SPATIAL MATRIX
spatial_matrix = pd.read_parquet('data/generated_files/spatial_matrix_dsaa.parquet')
spatial_matrix = pd.merge(pd.DataFrame(index=df.index), spatial_matrix, left_index=True, right_on='sez1')
spatial_matrix = pd.merge(pd.DataFrame(index=df.index), spatial_matrix, left_index=True, right_index=True)
place_features = []
neighborhood_columns = []
additional_features = []
if args.neigh:
place_features = [
'employees',
'population',
'vacant_buildings',
'm2_residential',
'prox_metro',
'prox_railway',
'dist_airport',
'n_bus_stops',
'prox_parks',
'dist_industrial_area',
'dist_sea',
'prox_coffee', 'prox_enter', 'prox_shops', 'prox_restaurants', 'prox_school', 'prox_grocery',
'prox_library',
]
neighborhood_columns = [
'#_buildings',
'#_res_buildings',
'#_comm_buildings',
'urban_sum', 'comm_sum', 'other_sum', 'green_sum',
'census_area',
'E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16',
'num_companies',
'employees',
'population',
'vacant_buildings',
'm2_residential',
'heavy_ind',
'shop_ind',
'creative_ind',
]
additional_features = [
'neigh_land_use_mix3',
'neigh_buildings_age_mean', 'neigh_buildings_age_std',
'neigh_n_blocks'
]
if not args.open:
neighborhood_columns.extend(['score', 'fatturato', 'assessed_land_value'])
house_features = ['sqmt',
'constructionYear', 'energyClass', 'expensesCondominium',
'newFloorNumber', 'newHeating', 'portiere', 'infissi', 'giardino', 'arredato', 'esposizione',
'kitchen',
'condition', 'land_value',
# 'Piscina',
'Idromassaggio',
'Mansarda',
'Cantina',
'Camino',
'has_terrace', 'garage',
'placeType_Appartamento', 'placeType_Attico / Mansarda',
'placeType_Casa indipendente', 'placeType_Loft / Open Space',
'placeType_Villetta a schiera',
'property_class', 'property_type',
'locali', 'camere', 'altro', 'bagni',
]
new_neighborhood_columns = ['neigh_{}'.format(c) for c in neighborhood_columns]
all_features = house_features + place_features + new_neighborhood_columns + additional_features
print("FEATURES")
print(all_features)
for x in new_neighborhood_columns:
df[x] = 0.
for x in additional_features:
df[x] = 0.
df = df.astype(np.float32)
best_gridsearch_params = None
best_gridsearch_MAE = sys.maxsize
default_params = {'subsample': 0.9, 'reg_lambda': 5, 'reg_alpha': 1, 'n_estimators': 4000, 'min_child_weight': 3,
'max_depth': 20, 'learning_rate': 0.001, 'silent': 1, 'random_state': SEED, }
additional_model_params = {'objective': 'reg:linear', 'eval_metric': 'mae', 'silent': 1}
search_params = {'learning_rate': [0.001], 'subsample': [0.9],
'max_depth': np.arange(15, 25, 5), 'min_child_weight': np.arange(3, 15, 3),
'n_estimators': np.arange(4000, 5000, 1000),
'reg_lambda': [1, 3, 5], 'reg_alpha': [0, 1, 2],
'random_state': [SEED]}
if args.gpu:
additional_model_params['gpu_id'] = args.gpu
additional_model_params['tree_method'] = 'gpu_exact'
additional_model_params['objective'] = 'gpu:reg:linear'
# Dataframe with one house per census block
care_df = pd.merge(df, pd.DataFrame(index=df_case.groupby(df_case.index).first().index), right_index=True,
left_index=True)
n_splits = 5
if args.cv:
param_list = [default_params for _ in range(n_splits)]
fold_iterator = kfold(care_df)
elif args.gridsearch:
n_iterations = 15
train_idxs, _, test_idxs = train_validate_test_split_with_care(df, care_df, seed=SEED, return_indexes=True,
validate_percent=0)
param_list = list(ParameterSampler(search_params, n_iter=n_iterations))
folds = list(kfold(care_df))
# Cross-validation for each param-group
fold_iterator = [x for _ in range(len(param_list)) for x in folds]
param_list = [p for p in param_list for _ in folds]
elif args.testcity:
df_train = df[~(df.index.str.startswith(args.testcity))]
df_test = df[(df.index.str.startswith(args.testcity))]
train_idxs = df_train.groupby(df_train.index).first().index
test_idxs = df_test.groupby(df_test.index).first().index
param_list = [default_params]
fold_iterator = [[train_idxs, test_idxs]]
else:
care_df = pd.merge(df, pd.DataFrame(index=df_case.groupby(df_case.index).first().index), right_index=True,
left_index=True)
train_idxs, _, test_idxs = train_validate_test_split_with_care(df, care_df, seed=SEED, return_indexes=True,
validate_percent=0)
param_list = [default_params]
fold_iterator = [[train_idxs, test_idxs]]
# Cross-validation - or single city - loop
cv_iter = 0
ys_true = []
ys_pred = []
for (train_index, test_index), params in zip(fold_iterator, param_list):
care_df2 = pd.merge(df.loc[train_index, :], pd.DataFrame(index=df_case.groupby(df_case.index).first().index), right_index=True,
left_index=True)
df_train, df_val, _ = train_validate_test_split_with_care(df, care_df2, validate_percent=0.3, seed=SEED)
df_test = df.loc[test_index, :].copy()
test_indexes = [df.index.get_loc(x) for x in df_test.index.tolist()]
params = {**params, **additional_model_params}
df_cv = pd.concat((df_train, df_val))
if args.neigh:
spatial_matrix_temp = pd.merge(pd.DataFrame(index=df_cv.index), spatial_matrix, left_index=True,
right_on='sez1')
spatial_matrix_temp = pd.merge(pd.DataFrame(index=df_cv.index), spatial_matrix_temp, left_index=True,
right_index=True)
S = create_spatial_matrix(df_cv, spatial_matrix_temp)
n_blocks = np.array(S.sum(axis=1)).flatten()
# neighborhood features training
df_cv.loc[:, new_neighborhood_columns] = S.dot(df_cv.loc[:, neighborhood_columns].copy().fillna(0).values)
n_non_nan_scores = S.dot((~np.isnan(df_cv['score'].values)).astype(int))
# additional features
df_cv.loc[:, 'neigh_census_area'] = df_cv['neigh_census_area'] / n_blocks
df_cv.loc[:, 'neigh_n_blocks'] = n_blocks
df_cv.loc[:, 'neigh_m2_residential'] = df_cv['neigh_m2_residential'] / df_cv['census_area']
if not args.open:
df_cv.loc[:, 'neigh_score'] = df_cv['neigh_score'] / n_non_nan_scores
df_cv.loc[:, 'neigh_buildings_age_mean'], df_cv.loc[:, 'neigh_buildings_age_std'] = compute_age_mean_std(
df_cv.loc[:, ['E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16']].copy().values)
df_cv.loc[:, 'neigh_land_use_mix3'] = compute_land_use_mix(
df_cv.loc[:, ['neigh_urban_sum', 'neigh_comm_sum', 'neigh_green_sum']].copy().values)
# Merge with housing listings
df_cv_m = pd.merge(df_cv, df_case, right_index=True, left_index=True)
print("USING PARAMS")
print(params)
print("NUM ROWS (CV):", len(df_cv_m))
if args.neigh:
spatial_matrix_temp = pd.merge(pd.DataFrame(index=df_train.index), spatial_matrix, left_index=True, right_on='sez1')
spatial_matrix_temp = pd.merge(pd.DataFrame(index=df_train.index), spatial_matrix_temp, left_index=True, right_index=True)
S_train = create_spatial_matrix(df_train, spatial_matrix_temp)
n_blocks = np.array(S_train.sum(axis=1)).flatten()
# neighborhood features training
df_train.loc[:, new_neighborhood_columns] = S_train.dot(df_train.loc[:, neighborhood_columns].copy().fillna(0).values)
n_non_nan_scores = S_train.dot((~np.isnan(df_train['score'].values)).astype(int))
# additional features
df_train.loc[:, 'neigh_census_area'] = df_train['neigh_census_area'] / n_blocks
df_train.loc[:, 'neigh_n_blocks'] = n_blocks
df_train.loc[:, 'neigh_m2_residential'] = df_train['neigh_m2_residential'] / df_train['census_area']
if not args.open:
df_train.loc[:, 'neigh_score'] = df_train['neigh_score'] / n_non_nan_scores
df_train['neigh_buildings_age_mean'], df_train['neigh_buildings_age_std'] = compute_age_mean_std(
df_train.loc[:, ['E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16']].copy().values)
df_train.loc[:, 'neigh_land_use_mix3'] = compute_land_use_mix(df_train.loc[:, ['neigh_urban_sum', 'neigh_comm_sum', 'neigh_green_sum']].copy().values)
# neighborhood features training
val_indexes = [df_cv.index.get_loc(x) for x in df_val.index.tolist()]
if args.neigh:
df_val.loc[:, new_neighborhood_columns] = df_cv.loc[:, new_neighborhood_columns].values[val_indexes]
df_val.loc[:, additional_features] = df_cv.loc[:, additional_features].values[val_indexes]
# Merge with housing listings
df_train_m = pd.merge(df_train, df_case, right_index=True, left_index=True)
df_val_m = pd.merge(df_val, df_case, right_index=True, left_index=True)
X_train = df_train_m[all_features].reset_index(drop=True)
y_train = df_train_m[args.target].reset_index(drop=True)
X_val = df_val_m[all_features].reset_index(drop=True)
y_val = df_val_m[args.target].reset_index(drop=True)
xgdmat = xgb.DMatrix(X_train, y_train, feature_names=all_features)
xgdmat_val = xgb.DMatrix(X_val, y_val, feature_names=all_features)
eval_set = [(xgdmat, 'train'), (xgdmat_val, 'validation')]
final_gb = xgb.train(params, xgdmat, num_boost_round=params['n_estimators'], evals=eval_set, early_stopping_rounds=50, verbose_eval=150)
if args.testcity is None and args.save:
print("SAVING MODEL")
pickle.dump(final_gb, open('data/generated_files/trained_{target}.model'.format(target=args.target), "wb"))
# TEST DATA
if args.neigh:
S = create_spatial_matrix(df, spatial_matrix)
n_blocks = np.array(S.sum(axis=1)).flatten()
# neighborhood features training
df.loc[:, new_neighborhood_columns] = S.dot(df.loc[:, neighborhood_columns].copy().fillna(0).values)
n_non_nan_scores = S.dot((~np.isnan(df['score'].values)).astype(int))
# additional features
df.loc[:, 'neigh_census_area'] = df['neigh_census_area'] / n_blocks
df.loc[:, 'neigh_n_blocks'] = n_blocks
df.loc[:, 'neigh_m2_residential'] = df['neigh_m2_residential'] / df['census_area']
if not args.open:
df.loc[:, 'neigh_score'] = df['neigh_score'] / n_non_nan_scores
df['neigh_buildings_age_mean'], df['neigh_buildings_age_std'] = compute_age_mean_std(
df.loc[:, ['E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16']].copy().values)
df.loc[:, 'neigh_land_use_mix3'] = compute_land_use_mix(df.loc[:, ['neigh_urban_sum', 'neigh_comm_sum', 'neigh_green_sum']].copy().values)
# neighborhood features training
df_test.loc[:, new_neighborhood_columns] = df.iloc[test_indexes][new_neighborhood_columns]
df_test.loc[:, additional_features] = df.iloc[test_indexes][additional_features]
# Merge with housing listings
df_test_m = pd.merge(df_test, df_case, right_index=True, left_index=True)
X_test = df_test_m[all_features].reset_index(drop=True)
y_test = df_test_m[args.target].reset_index(drop=True)
testdmat = xgb.DMatrix(X_test, feature_names=all_features)
y_pred = final_gb.predict(testdmat, ntree_limit=final_gb.best_ntree_limit)
# Save results
if args.testcity is None and args.save:
tosave_df = pd.DataFrame(list(zip(df_test_m.index.tolist(), y_pred, y_test-y_pred, df_test_m['price'].values)))
tosave_df.columns = ['geoid', 'prediction', 'difference', 'price']
tosave_df.to_csv('data/generated_files/raw_predictions_ubicomp_{target}.csv'.format(target=args.target), index=False)
#save_test_df = pd.concat((df_test_m[all_features].reset_index(drop=True), tosave_df.reset_index(drop=True)), axis=1)
#save_test_df.to_csv('data/generated_files/test_df_ubicomp_{target}.csv'.format(target=args.target))
ys_true.extend(y_test)
ys_pred.extend(y_pred)
print("")
print("FOLD RESULTS DATA")
print("MAE", mean_absolute_error(y_test, y_pred))
print("MdAPE", median_absolute_p_error(y_test, y_pred))
if cv_iter % n_splits == n_splits-1:
avg_mae = mean_absolute_error(ys_true, ys_pred)
if avg_mae < best_gridsearch_MAE:
best_gridsearch_params = params
best_gridsearch_MAE = avg_mae
ys_true = []
ys_pred = []
cv_iter += 1
if not args.gridsearch:
ys_true = np.array(ys_true)
ys_pred = np.array(ys_pred)
print("")
print("CROSS-VALIDATION RESULTS")
print("MAE", mean_absolute_error(ys_true, ys_pred))
print("MdAPE", median_absolute_p_error(ys_true, ys_pred))
if args.gridsearch:
print("BEST PARAMS:")
print(best_gridsearch_params)
if __name__ == '__main__':
main()