-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
img_helper.py
86 lines (74 loc) · 2.74 KB
/
img_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import math
import cv2
from skimage import transform as stf
def transform(data, center, output_size, scale, rotation):
scale_ratio = float(output_size) / scale
rot = float(rotation) * np.pi / 180.0
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = stf.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = stf.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = stf.SimilarityTransform(rotation=rot)
t4 = stf.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
trans = t.params[0:2]
#print('M', scale, rotation, trans)
cropped = cv2.warpAffine(data,
trans, (output_size, output_size),
borderValue=0.0)
return cropped, trans
def transform_pt(pt, trans):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(trans, new_pt)
#print('new_pt', new_pt.shape, new_pt)
return new_pt[:2]
def gaussian(img, pt, sigma):
# Draw a 2D gaussian
assert (sigma >= 0)
if sigma == 0:
img[pt[1], pt[0]] = 1.0
return True
#assert pt[0]<=img.shape[1]
#assert pt[1]<=img.shape[0]
# Check that any part of the gaussian is in-bounds
ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)]
br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)]
if (ul[0] > img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0
or br[1] < 0):
# If not, just return the image as is
#print('gaussian error')
return False
#return img
# Generate gaussian
size = 6 * sigma + 1
x = np.arange(0, size, 1, float)
y = x[:, np.newaxis]
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], img.shape[1])
img_y = max(0, ul[1]), min(br[1], img.shape[0])
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return True
#return img
def estimate_trans_bbox(face, input_size, s=2.0):
w = face[2] - face[0]
h = face[3] - face[1]
wc = int((face[2] + face[0]) / 2)
hc = int((face[3] + face[1]) / 2)
im_size = max(w, h)
#size = int(im_size*1.2)
scale = input_size / (max(w, h) * s)
M = [
[scale, 0, input_size / 2 - wc * scale],
[0, scale, input_size / 2 - hc * scale],
]
M = np.array(M)
return M