Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks.
Introduction
https://arxiv.org/pdf/1607.02586v1.pdf
This is an implementation based on my understanding, with small variations. It doesn't necessarily represents the paper published by the original authors.
Authors: Xin Pan (Github: panyx0718), Anelia Angelova
Results:
![Sample1](g3doc/cross_conv.png) ![Sample2](g3doc/cross_conv2.png) ![Loss](g3doc/cross_conv3.png)Prerequisite:
-
Install TensorFlow (r0.12), Bazel.
-
Download the Sprites dataset or generate moving object dataset.
Sprites data is located here:
http://www.scottreed.info/files/nips2015-analogy-data.tar.gz
Convert .mat files into images and use sprites_gen.py to convert them to tf.SequenceExample.
How to run:
ls -R
.:
data next_frame_prediction WORKSPACE
./data:
tfrecords tfrecords_test
./next_frame_prediction:
cross_conv g3doc README.md
./next_frame_prediction/cross_conv:
BUILD eval.py objects_gen.py model.py reader.py sprites_gen.py train.py
./next_frame_prediction/g3doc:
cross_conv2.png cross_conv3.png cross_conv.png
# Build everything.
bazel build -c opt next_frame_prediction/...
# The following example runs the generated 2d objects.
# For Sprites dataset, image_size should be 60, norm_scale should be 255.0.
# Batch size is normally 16~64, depending on your memory size.
#
# Run training.
bazel-bin/next_frame_prediction/cross_conv/train \
--batch_size=1 \
--data_filepattern=data/tfrecords \
--image_size=64 \
--log_root=/tmp/predict
step: 1, loss: 24.428671
step: 2, loss: 19.211605
step: 3, loss: 5.543143
step: 4, loss: 3.035339
step: 5, loss: 1.771392
step: 6, loss: 2.099824
step: 7, loss: 1.747665
step: 8, loss: 1.572436
step: 9, loss: 1.586816
step: 10, loss: 1.434191
#
# Run eval.
bazel-bin/next_frame_prediction/cross_conv/eval \
--batch_size=1 \
--data_filepattern=data/tfrecords_test \
--image_size=64 \
--log_root=/tmp/predict