From 26fd0e30791e956a135fce6f1ea71d3c02ccbd05 Mon Sep 17 00:00:00 2001 From: Franck Mamalet <49721198+franckma31@users.noreply.github.com> Date: Thu, 7 Nov 2024 17:54:24 +0100 Subject: [PATCH] clean test_condense --- tests/test_condense.py | 42 ------------------------------------------ 1 file changed, 42 deletions(-) diff --git a/tests/test_condense.py b/tests/test_condense.py index 64c5443..0c6cb7c 100644 --- a/tests/test_condense.py +++ b/tests/test_condense.py @@ -236,23 +236,11 @@ def test_model(layer_type, layer_params, k_coef_lip, input_shape): steps_per_epoch=steps_per_epoch, callbacks=callback_list, ) - # model.__getattribute__(FIT)( - # linear_generator(batch_size, input_shape, kernel), - # steps_per_epoch=steps_per_epoch, - # epochs=epochs, - # verbose=0, - # callbacks=callback_list, - # ) # the seed is set to compare all models with the same data np.random.seed(42) # get original results test_dl = linear_generator(batch_size, input_shape, kernel) loss, mse = uft.run_test(model, test_dl, loss_fn, metrics, steps=10) - # loss, mse = model.__getattribute__(EVALUATE)( - # linear_generator(batch_size, input_shape, kernel), - # steps=10, - # verbose=0, - # ) # generate vanilla if vanilla_require_a_copy(): model2 = get_model(layer_type, layer_params, input_shape, k_coef_lip) @@ -267,29 +255,16 @@ def test_model(layer_type, layer_params, k_coef_lip, input_shape): loss=uft.MeanSquaredError(), metrics=[uft.metric_mse()], ) - # vanilla_model.compile( - # optimizer=optimizer, loss="mean_squared_error", metrics=[metrics.mse] - # ) np.random.seed(42) # evaluate vanilla test_dl = linear_generator(batch_size, input_shape, kernel) loss2, mse2 = uft.run_test(model, test_dl, loss_fn, metrics, steps=10) - # loss2, mse2 = model.__getattribute__(EVALUATE)( - # linear_generator(batch_size, input_shape, kernel), - # steps=10, - # verbose=0, - # ) np.random.seed(42) # check if original has changed test_dl = linear_generator(batch_size, input_shape, kernel) vanilla_loss, vanilla_mse = uft.run_test( vanilla_model, test_dl, loss_fn, metrics, steps=10 ) - # vanilla_loss, vanilla_mse = vanilla_model.__getattribute__(EVALUATE)( - # linear_generator(batch_size, input_shape, kernel), - # steps=10, - # verbose=0, - # ) model.summary() vanilla_model.summary() @@ -314,32 +289,15 @@ def test_model(layer_type, layer_params, k_coef_lip, input_shape): steps_per_epoch=steps_per_epoch, callbacks=callback_list, ) - # model.__getattribute__(FIT)( - # linear_generator(batch_size, input_shape, kernel), - # steps_per_epoch=steps_per_epoch, - # epochs=1, - # verbose=0, - # callbacks=callback_list, - # ) np.random.seed(42) test_dl = linear_generator(batch_size, input_shape, kernel) loss3, mse3 = uft.run_test(model, test_dl, loss_fn, metrics, steps=10) - # loss3, mse3 = model.__getattribute__(EVALUATE)( - # linear_generator(batch_size, input_shape, kernel), - # steps=10, - # verbose=0, - # ) # check if vanilla has changed np.random.seed(42) test_dl = linear_generator(batch_size, input_shape, kernel) vanilla_loss2, vanilla_mse2 = uft.run_test( vanilla_model, test_dl, loss_fn, metrics, steps=10 ) - # vanilla_loss2, vanilla_mse2 = vanilla_model.__getattribute__(EVALUATE)( - # linear_generator(batch_size, input_shape, kernel), - # steps=10, - # verbose=0, - # ) np.testing.assert_equal( vanilla_mse, vanilla_mse2,