
SpotLake: Diverse Spot Instance Dataset Archive Service

Sungjae Lee Jaeil Hwang Kyungyong Lee

Department of Computer Science, Kookmin University, Seoul, South Korea
{sungjae, jaeil, leeky}@kookmin.ac.kr

Abstract

Public cloud service vendors provide a surplus of comput-
ing resources at a cheaper price as a spot instance. Despite
the cheaper price, the spot instance can be forced to be
shutdown at any moment whenever the surplus resources are
in shortage. To enhance spot instance usage, vendors provide
diverse spot instance datasets. Among them, the spot price
information has been most widely used so far. However, the
tendency toward barely changing spot price [5, 21] weakens
the applicability of the spot price dataset. Besides the price
dataset, the recently introduced spot instance availability and
interruption ratio datasets can help users better utilize spot
instances, but they are rarely used in reality. With a thorough
analysis, we could uncover major hurdles when using the new
datasets concerning the lack of historical information, query
constraints, and limited query interfaces. To overcome them,
we develop SpotLake, a spot instance data archive web service
that provides historical information of various spot instance
datasets. Novel heuristics to collect various datasets and a data
serving architecture are presented. Through real-world spot
instance availability experiments, we present the applicability
of the proposed system. SpotLake is publicly available as a
web service to speed up cloud system research to improve spot
instance usage and availability while reducing cost.

1. Introduction

Cloud computing has changed the way in which we
consume computing resources. One of the most significant
changes is its novel on-demand billing model in which
users pay for what they have used. Furthermore, excess
computing resources are provided at a much lower cost
than on-demand pricing, commonly referred to as a spot
instance, which is provided by most public cloud vendors.
Despite the lower price of spot instances, resources may
be forced to be shut down as demand changes, and users
should be prepared for a sudden interruption to running
instances. Amazon Web Services (AWS), the leading cloud
service provider, has been providing spot instance price
history since the service inception to help users anticipate
price changes and the possibility of instance interruption.
The spot price change history dataset triggered extensive
research [1, 14, 23, 41, 51] to optimize spot instance usage
from various domains, such as big data processing [53],
deep learning [31], and batch processing [35, 47].

The spot price change history dataset is very popular
in the literature for research and system implementation
when using spot instances. However, in 2017, AWS changed

its spot instance operation policy to make the price change
less volatile [7]. The change made most of the previous spot
price analysis work obsolete and prevented the prediction
of spot instance reliability using the spot price change
history [5, 21]. Despite this, many spot instance-related
works still rely solely on the price history data, which is
irrelevant to the availability.

However, the spot price is not the only spot instance
dataset, and public cloud vendors provide spot instance
availability and interruption ratio datasets. For example,
AWS provides the spot placement score from 2021, and it
reflects the likelihood of spot request success, which can
be an indication of timely availability. The spot instance
advisor dataset1, which was first released in 2015 by AWS,
provides the interruption ratio of a spot instance during
the preceding month as well as the cost saving ratio over
on-demand price. Although these two most recent spot
datasets provide useful information for spot instances, they
have not received as much attention as the price dataset
and have yet to be thoroughly evaluated.

Compared to the spot price dataset, whose historical and
current information can be easily fetched programmatically,
collecting the availability and interruption ratio datasets
poses multiple challenges. Unlike the price dataset, the two
new datasets do not include historical data. When creating
a query, the spot placement score imposes numerous con-
straints. The interruption ratio dataset is accessible through
the website, and it does not provide programmatic access. To
expedite research in the related fields and enhance reliable
spot instance usage by circumventing similar challenges
that we have encountered during the data collection process,
we have built a spot data archive service2 in which a user
can access the historical dataset of spot instance availability,
interruption frequency, cost savings, and spot price in a
single place.

Using the collected datasets, we conducted a thorough
analysis to uncover the characteristics of various spot
instance datasets. We discovered that distinct spot instance
datasets present contradicting information quite often with
low Pearson correlation coefficients [6], which might con-
fuse spot instance users, and we showed which dataset is
more credible through an empirical analysis. To show the
applicability of the historical spot instance datasets, we built
a simple machine learning model to predict spot instance
interruption events, which were measured through real-

1. https://aws.amazon.com/ec2/spot/instance-advisor

2. https://spotlake.ddps.cloud

242

2022 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-8798-6/22/$31.00 ©2022 IEEE
DOI 10.1109/IISWC55918.2022.00029

Status Description
Pending Evaluation A valid spot request is submitted

Holding Some request constraints cannot be met (price,
location, resource availability, ...)

Fulfilled All the spot request constrains are met, and
instance status being updated to running

Terminal A spot request is disabled possibly by price
outbid, resource unavailability, user, ...

TABLE 1: Possible spot instance request status and descrip-
tion

world experiments, and even a simple model achieved better
accuracy than considering only the current spot instance
information. We are certain that further investigation and
complex modeling from the research community using the
diverse historical datasets can greatly improve usability
while reducing interruptions. We believe the proposed spot
dataset service can serve as a starting point to initiate new
research to enhance spot instance reliability.

In summary, the major contributions are as follows.

• First thorough composite analysis of spot instance
availability, interruption ratio, and spot price dataset

• Real-world experiments to record the availability of
spot instances, confirming the information validity
provided by cloud vendors

• New insight, an abundance of spot availability
datasets can result in more accurate prediction of
spot reliability

• Provision of historical spot instance dataset and
artifacts that are vital to initiating new research to
enhance spot instance usage

2. Transient Instances on Cloud and Datasets

One of the key factors that led to cloud computing’s
success was its elastic billing model. Before cloud computing,
computing power had to be purchased in the unit of
hardware. The on-demand pricing mechanism of cloud
computing allows users to pay for resources only when
they are needed. Aside from on-demand pricing, public
cloud service vendors offer surplus computing resources at
a much lower cost than on-demand instances. These are
referred to as spot instances, and they include AWS Spot
Instance, Microsoft Azure Spot Virtual Machines (VMs), and
Google Cloud Spot VMs.

The spot cloud instance was first introduced by AWS in
2009. Since its inception, it adopts a market-driven auction
through a uniform price and sealed bid mechanism. By the
uniform price, all spot instance users pay for the same spot
price regardless of a bid price, and users do not know the
bidding price of other users (sealed bid) [1]. The service
vendor determines the spot price based on supply and
demand for cloud instances. The spot price varies depending
on the instance type and availability zone. When an out-bid
event occurs or idle resources become scarce, spot instances
can be forced to shut down.

The possible state of spot instance request is summarized
in Table 13. Upon submission of a valid spot instance
request, the request status becomes Pending Evaluation.
In the status, if any of the constraints cannot be met, the
request status becomes Pending. Possible reasons for the
status include spot instance capacity not available in the
requested available zone or bidding spot price too low. If
all the constraints of a spot request are met, it becomes
Fulfilled status. In the status, an instance is started with
configurations specified in a spot request. It might take a
few minutes for an instance to start. A spot request with a
running spot instance can become the Terminal status for
the following reasons: spot price out-bid or spot resource
capacity not available, and they are generally referred to
as spot instance interruption. A user can also terminate an
instance voluntarily.

Owing to the lack of spot instance reliability, users
should prepare a plan to deal with an instance interruption.
To help users better utilize spot instances, service vendors
provide diverse information, such as spot instance price,
current spot instance availability, and statistics of spot
instance interruption ratio over the prior period.

2.1. Spot Instance Price

AWS provides spot instance price change history dataset
through its website and Command Line Interface (CLI)
library to allow programmatic access. Users can specify
the start and end times of queries as well as availability
zones and instance types. The returned output includes the
timestamp at which a spot price changes as well as the
changed spot price at the time. When using spot instances,
the history of the spot price for the previous three months
provides insightful information, and many studies have
been conducted using the dataset. Statistical analysis of the
spot price change helps users to better understand the spot
instance market [1, 14, 23, 33, 41, 51, 52]. Using the spot
price change history, many studies have been conducted to
propose an optimal bidding algorithm [3, 17, 26, 32, 42, 45,
48, 54, 56].

The active and wide usage of spot price change data was
feasible because the data update frequency was timely and
users could estimate the likelihood of instance interruption
and cost savings in AWS. However, in 2017, AWS changed
its spot instance operation policy [7]. In the new policy,
the spot price changes less frequently and is thus more
stable [5, 21]. However, spot prices in the new policy no
longer represent interruption events. Before the update, a
user could predict the interruption events by comparing
the bid and spot prices. Now, following the update, the
spot price does not accurately reflect the surplus of idle
computing resources, particularly when it is low. As a result,
when an advertised spot price remains lower than the bid
price, the instance interruptions can still occur, making the
results of previous related research work obsolete.

3. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
spot-request-status.html

243

2.2. Spot Instance Interruption Ratio

Instance interruptions are a major concern for most spot
instance users. To help users estimate the probability of
interruption, cloud service vendors provide the interruption
ratio. AWS’s Spot Instance Advisor provides the rate at
which spot instances have been interrupted in the preceding
month. The interruption frequency data are divided into five
categories: less than 5%, between 5% and 10%, between
10% and 15%, between 15% and 20%, and more than 20%.
The interruption ratio data are provided per a combination
of instance type and region, which is a coarser-grained
manner than that of spot price. The service is officially
accessible via the website only, and it does not support the
programmatic access.

2.3. Spot Instance Availability

The spot instance interruption ratio dataset reflects the
reliability during the preceding month, and it might not
reflect the current spot resource availability in a timely
manner, which can directly impact the success of a spot
instance request. To provide timely spot instance avail-
ability, AWS offers the Spot Placement Score service [22].
The placement score’s primary goal is to assist users in
estimating the likelihood of a successful spot request before
launching an instance type in a specific availability zone.
The internal details of how the metric is calculated are not
publicly available. Externally, it takes the desired instance
types, regions, and target capacity as arguments and returns
a placement score ranging from 1 to 10, with a higher score
indicating a greater likelihood of spot request success. The
spot placement score can be accessed via the website and
CLI.

3. Spot Instance Datasets Collection

Unlike the spot instance price dataset, which provides
historical information via CLI, the other two recent spot
instance data sources presented in Sections 2.2 and 2.3 have
a few shortcomings in the data itself and access medium
with query constraints that must be overcome.

3.1. Challenges in Data Collection

No historical data: For both the spot instance inter-
ruption ratio and availability datasets, users can query only
the current value, and no historical information is provided.
Meanwhile, up to three months of spot price history data
are provided, and long-term data history was a valuable
source for optimizing spot instance usage [3, 23]. Thus, to
allow the spot instance interruption ratio and availability
datasets to enhance spot instance usage, historical data
should be provided allowing further analysis from academia
and industry.

Query limitation: The spot instance availability in-
formation expressed by the spot placement score imposes
various limitations in the query, and they are described in its
official document page [43]. The most significant limitation
is the number of unique queries allowed in 24 hours. This

can be a serious drawback, especially when a user wants
to investigate the availability of multiple instance types
across several regions. According to our empirical analysis,
an account can issue a maximum of 50 unique queries in
24 hours. The uniqueness of a query is determined by the
combination of regions, instance types, and the number
of desired instances. An aggregated placement score value
for the specified instance types in a query is returned for
each region in the argument for each unique query. Issuing
the same query multiple times does not count against the
query limit. Thus, one can issue 50 unique queries multiple
times to record the values changes.

The spot placement score differs for distinct availability
zones even if they are located in the same region. In a query,
a user can specify an option of SingleAvailabilityZone as
true to get score values for each availability zone in a
region specified in the query. Another query regulation
is imposed for the number of returned placement scores,
which is limited to 10. For example, if a query specifies
multiple regions with the SingleAvailabilityZone option
as true, there can be more than 10 placement scores
for different availability zones. In such a case, only 10
placement scores with larger scores are returned.

At the time of this writing, there are about 547 instance
types, 17 regions, and 63 availability zones in AWS. To
scan the spot placement scores for all possible instance
type and region combinations, 547 × 17 = 9, 299 queries
should be executed at most. Given the limit of 50 unique
queries per account, it is impossible to obtain scores for
all instance type region combinations. Users can optimize
a query by specifying multiple regions in a query, but
the number of placement score results returned from a
query is still limited to 10. A large number of possible spot
placement score query dimensions regarding instance types,
regions, availability zones, and the number of instances
necessitates the use of a specialized data service to provide
comprehensive, timely information.

Limited query interface: Among the many ways to
use and operate cloud resources, programmatic access is
preferred over a management console that uses a graphical
user interface [36]. From the context, spot price history
and spot placement score data are provided through CLI,
which allows programmatic management. However, the
interruption ratio information is natively supported only
from the management console and hurts operability [27]
without programmatic access.

3.2. Data Collection Methodology

To improve efficiency when using spot instances, it is
important to broaden target instance types if a workload
does not have a specific hardware requirement. Further-
more, if a workload does not have a specific geographical
requirement, the possibility of cost saving can be further
improved [14, 31], and building a compute cluster with
heterogeneous spot instances is proven to be an efficient
solution for data-parallel analysis tasks [49]. Timely and
detailed spot instance status information is required to

244

Regions Number

of AZs

ap-northeast-1 2

ap-northeast-2 2

ap-southeast-1 2

ap-southeast-2 1

ca-central-1 1

eu-central-1 2

eu-west-1 2

eu-west-2 2

us-east-1 4

us-east-2 2

us-west-2 3

Before Query Optimization
[p3.2xlarge]

11 Queries

547 Instances 17 Regions
9299 Queries / 186 Users

×

Regions Number

of AZs

ap-southeast-1 2
eu-west-1 2
eu-central-1 2
eu-west-2 2
ap-northeast-1 2
Sum of numbers 10

us-west-2 3
us-east-2 2
ap-northeast-2 2
ca-central-1 1
ap-southeast-2 1
Sum of numbers 9

us-east-1 4
Sum of numbers 4

After Query Optimization
[p3.2xlarge]

3 Queries

Optimized Result
2226 Queries / 45 Users

COIN-OR
Branch and Cut Algorithm

weights : List of Nums
capacity : 10

2

2

2

2

2

2

2

3

1
1

10/10 9/10 4/10

4

Figure 1: Spot placement score query optimization using
bin-packing algorithm (mixed integer programming solver)

build a cost-optimal cloud environment while broadening
candidate spot resources.

To optimally query the spot instance availability dataset,
we must organize an instance type with multiple regions,
each of which may have a different number of availability
zones. We must also consider that not all availability zones
in a region support a specific instance type. To run spot
placement queries as efficiently as possible, we created a
nested dictionary whose key is an instance type and the
corresponding value is another dictionary whose key is the
region and the value is the number of availability zones that
support the instance type in the outer dictionary’s key. The
problem can be simplified to a bin-packing algorithm [30],
which collocates regions together while making the sum
of the number of availability zones of each region the
maximum number of returned results. After the problem
abstraction, we used Google OR-Tools [39] to solve the bin-
packing problem. Among possible libraries, we used COIN-
OR Branch-and-Cut (CBC) [15] implementation, which is a
mixed-integer programming solver. After packing multiple
regions with a single instance type to be requested in a
query, we decreased the total number of required queries
from 9, 299 to 2, 226 which is about a 4.5× improvement.

Figure 1 explains the spot placement query optimization
example with a sample instance type of p3.2xlarge. The
regions and number of availability zones that support the
instance type are shown on the left side of the figure.
Following the bin-packing execution, multiple regions are
grouped into a single query to reduce the total number of
queries.

4. Implementation of Spot Data Archive Ser-
vice

Challenges in collecting diverse historical spot instance
datasets for heterogeneous instances located globally might
slow down new study outcomes from the cloud system
research community. To overcome the shortcomings, we im-

Figure 2: Data archive service implementation adopting a
serverless architecture

plement a data archive web service4 that provides historical
information of the spot instance availability, the interruption
ratio, and the cost savings over on-demand instances. The
architecture of the implemented web service is shown in
Figure 2. To relieve resource management burdens of the
application servers, we adopted a serverless architecture
where applicable. The spot data collector server periodically
executes collection tasks for different data sources. The
spot advisor dataset does not support programmatic access,
and we used the SpotInfo [29] tool to collect the dataset
programmatically. The spot instance advisor dataset can be
queried with a single execution, whereas the spot placement
score necessitates multiple queries with various entities. The
spot dataset can be well represented using a time-series
format, and we use an Amazon Timestream database, a fully
managed time-series database service.

The front-end service is also implemented by adopting a
serverless architecture where static files are served from an
object storage service (Amazon S3), and the dynamic con-
tents in a webpage are updated in real-time using an AJAX
protocol. A user’s request with various query parameters
is delivered via API Gateway and passed to Lambda, which
fetches necessary datasets from the Timestream database.
The current implementation keeps a historical dataset of
the spot placement score and instance advisor dataset for all
regions and instance types. Users can query specifying the
timestamp, regions, availability zones, and instance types.

5. Spot Instance Data Analysis

Many of the prior works in the literature have analyzed
the spot price history data thoroughly. However, to the best
of the authors’ knowledge, no prior work has analyzed the
spot instance availability and interruption ratio datasets. As
the practicality of the spot price dataset weakens [21], we
are confident that a thorough analysis of other available
spot instance information is critical to better utilize spot
resources.

4. https://spotlake.ddps.cloud

245

For the analysis, we used the current spot instance
availability dataset provided by the spot placement score
and the interruption ratio dataset from January 1, 2022
to June 30, 2022, for a total of 181 days. The data were
collected every 10 minutes. In the analysis, we used the
term spot placement score to represent the current spot
instance availability. The interruption ratio, which was
included in the spot instance advisor dataset, was provided
as a categorical value from the lowest frequency of less
than 5% to the highest frequency of more than 20%. To
improve our analysis, we converted the categorical value
to a score value by matching the range with that of the
spot placement score, which is between 1.0 and 3.0. We set
the lowest interruption frequency to 3.0 and the highest
interruption frequency to 1.0 in the score representation.
There are three more categorical values in between, and
we assign them 2.5, 2.0,, and 1.5, ranging from lower to
higher interruption frequency. The converted interruption
frequency information is referred to as the interruption-free
score. A higher interruption-free score, like a higher spot
placement score, indicates better spot instance availability.

5.1. Spot Placement and Interruption-free Score

Figure 3 presents temporal changes of spot placement
score (Figure 3a) and interruption-free score (Figure 3b)
using a grayscale heatmap. The brighter colors express
higher spot placement and interruption-free scores, which
imply higher spot instance availability. The horizontal axis
shows the elapsed days since the data collection start date.
The vertical axis represents instance classes offered by AWS.
They are shown in the order of general instance family
(T, M, A), compute-optimized instance family (C), memory-
optimized instance family (R, X, Z), accelerated-computing
instance family (P, G, DL, Inf, F, VT), followed by storage-
optimized instance family (I, D, H). In each instance class,
daily average score values are calculated.

The figures show that the spot placement score shows a
much lighter color (higher score) than the interruption-free
score. Overall, the average spot placement score across all
the instance types is 2.8, and that of the interruption-free
score is 2.22. Among many instance types, the accelerated-
computing instance family has the lowest spot placement
and interruption-free scores, which are 12.07% and 34.98%
lower than the average scores, respectively. We can infer
that such characteristics stem from the recent popularity of
the deep learning in which specialized hardware is widely
used both for training and inference tasks [20, 24]. Among
the accelerated-computing instance types, the DL instance
shows high spot placement and interruption-free scores. The
instance type provides a Gaudi processor, which is special-
purpose hardware for Deep Neural Net (DNN) training and
inference developed by Habana Labs [34]. It was released
recently, and we assume that the eco-system for DNN
development using the instance type is not yet mature,
which may explain the low usage so far. For instance
types with GPU devices, the G instance class shows higher
scores than P instance types. The G instance type equips
NVIDIA T4 GPU (G4dn) or AMD V520 (G4ad), and the

(a) Spot placement score

(b) Interruption-free score

Figure 3: Temporal variations of spot instance scores

P instance type equips NVIDIA Tesla V100 GPU (P3) or
Tesla A100 GPU (P4). Comparing the two instance types,
the P instance type shows better performance for DNN
tasks [8], but the G instance type is more affordable with a
lower hourly price. We presume that the better affordability
and cost-performance ratio of G instance types result in
higher resource capacity and increased possibility of surplus
resources. Concerning the temporal score changes, neither
spot placement nor interruption-free scores show significant
score variations as the date changes on the horizontal
axis. For the spot placement score, a sudden decrease
was uncovered around June 2, 2022. Further investigation
revealed score adjustments for most instance types during
the time, which might have resulted from the spike in the
spot instance usage.

To observe spatial characteristics of the spot placement
score for different instance classes, Figure 4 shows the
difference in scores between regions depending on spot
placement score (Figure 4a) and interruption-free score
(Figure 4b) with a grayscale heatmap. To cover a wide
range of instance types, we chose 17 regions with the
greatest number of instance types supported, which are
displayed on the horizontal axis. A region code is expressed
in the continent-coordinate-id combination. The color scale
and the instance classes presented on the vertical axis are
the same as those in Figure 3. Instance types that are not
supported in a specific region are marked as NA. From
the figures, we can visually observe a higher degree of
score variations across different regions, which coincides

246

(a) Spot placement score

(b) Interruption-free score

Figure 4: Spatial variation of spot instance scores

with the conclusions from previous work [14]. Among
accelerated-computing instance classes, the general-purpose
GPU devices (G and P) show relatively lower scores for
most regions. Thus, if users build a DNN environment for
a specific purpose, either training or inference, they can
use a more reliable spot instance environment by using
special-purpose instance types located globally [31], such
as DL for training and Inf for inference.

To understand the score distribution of the spot place-
ment and interruption-free scores, Table 2 shows the
percentage of values observed during the measurement
period. According to the table, most spot placement scores
are 3.0, and only 8.31% of spot placement scores are
1.0, indicating a high likelihood of the spot request being
successful. The interruption-free score, as opposed to the
spot placement score, exhibits a more uniform distribution
across distinct values. About 33.05% of cases show less
than 5% interruption frequency (score value : 3.0), but
20.84% of cases show an interruption ratio of more than
20% (score value : 1.0). From the scores’ value distribution,
we can roughly identify the difference between the two
spot datasets.

Figure 5 shows the spot placement and interruption-free
scores for different instance sizes, which are expressed on
the horizontal axis. The solid line represents the spot place-
ment score, and the dotted line represents the interruption-
free score, both of which are represented by values on the
primary vertical axis. For the instance sizes expressed on
the horizontal axis, we choose ones with greater than 10

Value Spot placement score Interruption-free score

3.0 87.88% 33.05%
2.5 NA 25.92%
2.0 3.81% 13.86%
1.5 NA 6.33%
1.0 8.31% 20.84%

TABLE 2: Value distribution of spot placement score and
interruption-free scores (higher value implies more stability)

Figure 5: The spot placement and interruption-free scores
grouped by the instance sizes

corresponding instance types. We discover that for instance
sizes with a low number of instance types, the average score
value is determined by only a few instance types and does
not adequately reflect the impact of sizes. The number of
instance types is expressed using a star marker whose value
is shown on the secondary vertical axis. From Figure 5,
we can observe that as the instance size increases, both
the spot placement and interruption-free scores decrease,
which coincides with Kadupitige et al. [25]. Larger instance
sizes necessitate more computing resources and are more
likely to cause resource fragmentation without instance
migration [13]. The lower flexibility of the larger size can
result in a low possibility of surplus resources and lower
availability scores.

Key findings: For spot placement and interruption-free
scores, the spatial diversity is more noticeable than the
temporal diversity, and it is recommended to distribute
spot instance usage across different regions [31]. The
accelerated-computing instance family shows noticeably
lower availability than other instance families. Requesting
a smaller size instance type is more likely to succeed with
a lower number of interruptions.

5.2. Spot Placement Score With Diverse Parame-

ters

When querying spot placement scores, users can specify
multiple instance types for a composite spot placement
score. To understand the characteristics of composite in-
stance type queries, we compared the placement score of a
query that specifies multiple instance types and scores of
multiple queries, each specifying a single instance type. The
goal of this analysis was to determine how a single instance
spot placement score affects the score when the instance
types are queried together. According to the official spot

247

Figure 6: Spot placement score composite instance type
query

placement score document, the score value ranges from
1 to 10. However, the maximum returned score in our
experimental queries that specified only a single instance
type was 3. From the observation, we assumed that the
maximum spot placement score, 10, would be returned
when a query specifies multiple instance types, and the
placement score of multiple instance types might be the
sum of the individual instance’s scores.

To check the validity of the hypothesis, we issued
multiple queries that specified three arbitrary instance types.
Figure 6 presents the returned placement score of a query
with multiple instance types on the horizontal axis. The
vertical axis presents the summed spot placement scores
when a query is made separately for each instance type. To
uniformly distribute the sum of individual spot placement
scores, we chose the same number of instance type and
availability zone combinations in each summed score value,
which ranged from 3 (all the three instance scores were
1) to 9 (all the three instance scores were 3). The figure is
presented in scatter plot format whose radius represents
the frequency of occurrences.

In the figure, we add a line of y = x with a slope of 1
to indicate a case in which the returned spot placement
score of multiple instance types is the same as the sum
of the individual spot placement scores of each instance
type. In the experiments, about 38.81% of cases are this
type of case. The circles to the lower-right of the y = x line
indicate cases in which the spot placement score of multiple
instance types is larger than the sum of individual scores,
and about 60.62% of cases are this type of case. Based on
the results of this experiment, we can conclude that the
sum of the individual scores can be the smallest of the
composite instance type spot requests. We observed two
cases in the experiments in which the composite instance

Figure 7: Changes of spot placement scores regarding
different number of requested resources

type score was less than the sum of the individual scores,
which we considered to be exceptions.

In a spot placement score query, users can specify the
number of spot instances to request, and Figure 7 presents
how the spot placement score changes when a large number
of instances is requested. The number of requested instances
in a query is shown on the horizontal axis, and the instance
classes are shown on the vertical axis. In the experiments,
we selected a few representative instance types in each
instance family. To control the total number of queries, we
used only the xlarge size where applicable. For instance, for
types that did not have the size, P4, we used the smallest
possible size.

Intuitively, specifying more instances in a spot request
lowers the chances of the fulfillment, and we can discovered
such a pattern. The ratio of spot placement score decrease
differed quite significantly across distinct instance types.
For example, instance types in the accelerated-computing
family, P, G and Inf, showed significant score drops when
a large number of resources was requested. The D instance
type, which belongs to the storage-optimized family, also
presented a noticeable score drop. Such instance types are
armed with specialized hardware internally in a host, such
as GPU devices in P and G, AWS Inferentia chips in Inf, and
large local storage disks in D instances, and the supply of
such resources might be lower than that of other general-
purpose instance types.

Key findings: The sum of the individual spot place-
ment scores of different instances can be regarded as the
minimum score of the composite spot placement scores.
Requesting a large number of spot instances in accelerated-
computing shows larger availability drops than that in
general instance families.

5.3. Correlations Among Multiple Spot Datasets

So far, we have analyzed the spot placement score and
interruption-free score independently. The two datasets
are generated in real-time, and the spot instance price
dataset is also available at the same time. From the spot
users’ perspective, three spot data sources exist, and it
can be challenging to decide which dataset provides the
most accurate information to infer the spot instance avail-

248

Figure 8: CDF of the Pearson correlation coefficient of any
two combinations of the spot placement score, interruption-
free score, and spot price.

ability, especially when distinct datasets imply contrasting
information. To understand the correlation among the spot
instance price, spot placement score, and interruption-free
score, we use the Pearson correlation coefficient [6] of the
two datasets’ combination among the spot placement score,
interruption-free score, and spot price. The Pearson corre-
lation coefficient of two variables, X and Y , is calculated
as follows.

RXY =
∑T

t (Xt – X)(Yt – Y)√∑T
t (Xt – X)2

√∑T
t (Yt – Y)2

The range of correlation coefficient is between 1.0 and
–1.0. A value close to 1.0 indicates a strong correlation
between two variables and can express variable dependency.
For instance, if the coefficient of spot placement and
interruption-free score is close to 1.0, we can assume that
the two variables contain similar information. Meanwhile,
a value close to –1.0 indicates a strong inverse correlation.
A coefficient value close to 0 indicates that two variables
have no correlation and are more likely to be independent.
Intuitively, the spot placement score and the interruption-
free score should have a strong correlation because a higher
spot placement score implies a higher likelihood of spot
request fulfillment and a higher interruption-free score also
implies a lower probability of spot interruption. Meanwhile,
the two values are expected to have a strong negative
correlation with the spot price because a higher spot price
can be an indication of spot instance shortage.

Figure 8 shows the Cumulative Distribution Func-
tion (CDF) of the Pearson correlation coefficient of the
combination of any two variables. The horizontal axis
presents the correlation coefficient values, and the vertical
axis expresses the distribution. The solid line depicts the
correlation coefficients between the spot placement score
and the interruption-free score, the dashed line depicts
the correlation coefficients between the interruption-free
score and the spot price, and the dotted line depicts
the correlation coefficients between the spot placement
score and the spot price. As shown in the figures, most
correlation coefficient values are located near 0.0, which

Figure 9: The distribution of score difference between the
spot placement score and interruption-free score

implies that the combination of any two spot datasets
has neither strongly positive nor negative correlations.
In the distribution, it is noticeable that the correlation
coefficients that include the spot price have a much higher
density around 0.0, implying that the spot price dataset
might have little information regarding the spot instance
availability compared to the other two publicly announced
spot instance datasets. This observation confirms what Irwin
et al. discovered [21] after the spot instance operation policy
change in 2017. In addition, the correlation coefficients
between the spot placement score and the interruption-free
score are also very low. For 62.57% of cases, the absolute
coefficient value is lower than 0.25, and 87.64% of cases
have correlation coefficients lower than 0.5.

The discrepancy among spot instance datasets can
confuse users when the publicly announced datasets present
contradicting information, such as a high spot placement
score (3.0) with a low interruption-free score (1.0). To
detect the extent to which the spot placement score and
interruption-free score differs, we count the difference in
the two scores at any given time and show the difference
using a histogram in Figure 9. The horizontal axis shows
the absolute score difference between the two datasets.
The maximum and minimum of the scores are 3.0 and 1.0,
respectively, and the step of the interruption-free score is
0.5. Thus, the maximum difference value is 2.0, which is
a complete contradiction, and the minimum difference is
0.0, which means the two score values are the same. The
vertical axis displays the percentile unit ratio of each score
difference. As illustrated in the figure, the difference of
0.0 accounts for most cases. There are, however, numerous
cases with contradictory information. For example, for about
17.41% of cases, the spot placement and interruption-free
scores present the opposite meaning. Considering that the
difference of 1.5 is not a negligible, for 24% of cases, spot
users might be confused about which datasets to follow for
optimal spot usage.

To understand how often the spot dataset changes,
Figure 10 presents a CDF of elapsed time between updates.
In the figure, the solid line represents the spot placement
score, the dashed line represents the interruption-free score,
and the dotted line represents the spot price. The horizontal
axis of Figure 10 expresses the elapsed time (hours) between
update events in a log scale, with a lower the value on

249

Figure 10: The distribution of the frequency of the value
changes for the spot placement score, interruption-free
score, and the savings over on-demand price.

the horizontal axis indicating a more frequently updated
variable. The spot placement score is updated the most
frequently, while the interruption-free score is updated the
least frequently. The interruption-free scores’ low value
change frequency is consistent with its score calculation
policy, which uses the interruption ratio observed over the
previous month. The frequent update of the spot placement
score can be an indication of timely information that can
reflect the success of the spot instance request well.

Key findings: The spot instance price, availability, and
interruption-ratio do not show strong correlations, and they
represent contradicting information quite often.

5.4. Fulfilment and Interruption Behavior

To decide which spot dataset is a more reliable source
of information, especially when they are contradicting, we
conducted experiments to determine how well different spot
datasets represent real-world spot instance behavior by mea-
suring the spot instance fulfillment and interruption ratio of
various instance types. The aim of the experiments was to
identify how different spot placement and interruption-free
scores affect spot instance availability. We decided to omit
the impact from the spot price because it is known to no
longer be a valid indication of spot instance availability [5,
21, 40].

In the experiments, we categorized the spot placement
scores and interruption-free scores into High, Medium,
and Low, whose values were 3.0, 2.0, and 1.0, respectively.
Then, we sampled instance type and availability zone,
which belonged to one of the H-H, H-L, L-H, M-M, and
L-L combinations where the character indicated the spot
placement score and interruption-free score in order. The
number of available instances in each combination differed,
and we performed stratified under-sampling with the lowest
number of available cases, which was the L-H combination.
With the stratified sampling [37], we tried to distribute
the instance type and availability zone uniformly across
all the candidates. The pure random sampling resulted in
a biased result to popular instance types and regions. In
total, we generated 503 experimental cases. Smaller and less

Metric Not-Fulfilled Interrupted

H-H 0% 14.71%
H-L 0% 40.52%
M-M 25.49% 39.22%
L-H 58.18% 30.91%
L-L 45.61% 45.61%

TABLE 3: The percentage of not-fulfilled and interrupted
spot requests for different dataset category.

expensive instance types were preferred where applicable
to keep the experimental cost within our budget. For all
the experimental cases, we issued a single spot instance
request after setting the bid price the same as the on-
demand price [45] and recorded the request status every
five seconds. In a spot request, we specified the persistent
parameter so that an interrupted instance was requested
again soon after an interruption event. Each experiment
scenario was conducted for 24 hours.

Table 3 presents the rates of cases that were not fulfilled
and interrupted cases. For the Not-Fulfilled, we counted
cases that did not become fulfilled at all in the 24-hour
experiment. For the Interrupted, we counted cases that
were interrupted at least once during the experiment. It is
noticeable that when the spot placement score was high, all
the requests were fulfilled in the experiments. When both
the spot placement and the interruption-free scores were
high, 14.71% of cases were interrupted at least once. When
either the spot placement or the interruption-free score
was medium or low, the interruption ratio skyrocketed to
45.61% at most. It is worth noting that a low spot placement
score is an indicator of fulfillment failure.

Overall, the success of fulfillment can be solely predicted
by considering the spot placement score, which should
reflect the most up-to-date resource availability information.
This concurs with the score update frequency presented
in Figure 10, which represented the shortest update fre-
quency of the spot placement score. When predicting the
interruption probability, it is more appropriate to consider
both the spot placement and interruption-free scores where
both values should score high.

To analyze how different spot placement and
interruption-free scores impact the behavior of fulfillment
and interruption, Figure 11 presents the elapsed time from a
spot request submission until it is fulfilled (Figure 11a) and
the elapsed time from the fulfillment until an interruption
event happens (Figure 11b). Both figures are represented
in a CDF format whose distribution is expressed on the
vertical axis. The horizontal axis shows the elapsed time
in seconds using the log scale. In each figure, we present
distinct distributions after categorizing the spot placement
and interruption-free scores into high, medium, and low.
In Figure 11a, when both scores are high, about 28.07% of
requests are fulfilled within one second, and over 90% of
requests are fulfilled within 135 seconds. When both scores
are low, it takes the longest to fulfill spot requests with a
median value of 1322 seconds. When the two scores are
contradictory, the higher spot placement score results in
the faster fulfillment.

250

(a) Latency until spot requests are fulfilled (shorter is better)

(b) Time until an interruption event happens (longer is better)

Figure 11: The CDF of latency distribution categorized by
the spot placement score and interruption-free score

Metric IF SPS Cost Save RF

Accuracy 0.45 0.64 0.39 0.73
F1-score 0.43 0.58 0.28 0.73

TABLE 4: Spot instance status prediction method perfor-
mance comparison. Using the historical dataset provided
by the proposed work (RF) shows the best performance

Figure 11b shows the time until a fulfilled spot instance
becomes interrupted, and a larger value indicates higher
availability. Similar to the time until fulfillment, the highest
availability is observed when both scores are high, and the
lowest availability is observed when both scores are low.
The interruption ratio, which is presented in Table 3, shows
a similar value when the spot placement and interruption-
free scores show distinct values. However, the spot instance
running time shows noticeable differences where the median
running time when the spot placement score is high
(High-Low case) is 6872 seconds, while that of when the
interruption-free score is high(Low-High) is 2859 seconds.

Key findings: When both spot placement and
interruption-free scores are high, it is the most reliable,
but when the two scores imply different information, the
spot placement score should take precedence.

5.5. Usefulness of Historical Spot Instance

Dataset

One of the main contributions of the proposed spot
instance data archive service is the offering of an historical
dataset. Using the historical dataset, we can take advantages
of abundant prior information by creating a machine
learning model to predict spot instance interruption events.
To present the practical advantage, we built a simple random
forest [9] model using a Python Scikit-Learn package [38]
with default parameters without tuning. For training and
testing, we used the real-world spot instance interruption
observation experimental results in Section 5.4. Using the
dataset, we defined a classification problem whose target
classes were NoInterrupt, Interrupted, and NoFulfill. When
building the simple prediction model, we used the historical
spot placement score and interruption-free score of the
preceding month as features. To compare the prediction
accuracy of the machine learning model that uses the
historical dataset with that of a simple heuristic that
does not use historical information, we used three distinct
heuristics that only used the current spot placement score,
interruption-free score, and cost savings. When using the
spot placement score to predict instance interruption, the
score being 3.0 at the time a spot instance request was made
was classified as NoInterrupt, being 2.0 was Interrupted,
and being 1.0 was NoFulfill. We set the thresholds for
interruption-free score and cost savings empirically after
numerous trials.

Table 4 shows the spot instance status prediction
performance. In the table, the IF (interruption-free), SPS
(spot placement score), and Cost Save columns represent
prediction heuristics that reference only the current in-
formation. The three heuristics are implementable using
the current spot instance datasets. The last column of
RF represents a prediction model that can use abundant
historical spot dataset information, which is available
through the proposed data archive service. We compare
the different methods using accuracy and F1-score, which
reflects both precision and recall [19]. As shown in the
table, the simple machine learning model that that uses
historical information from this proposed work outperforms
a heuristic that references only the current information.
Considering that the prediction model in this evaluation is
fairly simple, the research community could likely propose
a more elaborate and fine-tuned model using the proposed
service.

Key findings : Using the historical spot dataset infor-
mation provided by the proposed data archive service has
high potential to predict future spot instance availability,
which is vital to enhancing optimal cloud usage.

6. Related Work

Using spot instance price dataset: The spot instance
price change history dataset has been widely used for
various purposes. Uncovering statistical characteristics of
the spot price change [1, 14, 23, 33, 41, 51, 52] allows
spot instance users to estimate the resource availability

251

and cost savings when using spot instances. However,
the spot instance operation policy change in 2017 [7]
made the previous analysis work obsolete, and the price
change data itself does not provide information that is as
rich as it was before [5, 21]. Irwin et al. [21] thoroughly
discussed the advantages and disadvantages of the spot
price policy change while suggesting a direction for the spot
instance evolution. New spot instance datasets have been
released since the policy change, but they have received
comparatively little attention. To the best of the authors’
knowledge, this is the first study to empirically examine
spot instance availability information using a composite of
multiple spot instance datasets.

Modeling spot instance availability: Kadupitige et
al. [25] proposed a statistical model to represent the
constrained spot instance preemption through empirical
experiments using Google Cloud Spot VMs. The Google
cloud does not provide transient instance resource avail-
ability information as AWS does, and Kadupitige et al.
tried to build a statistical interruption model. Meanwhile,
AWS keeps opening new spot instance datasets, and we
attempted to analyze the characteristics and verify how the
dataset resembles real-world spot instance behavior. Pham
et al. [40] empirically analyzed the spot instance availability
with the interruption frequency dataset provided by AWS.
As presented in Section 5.4, the spot instance fulfillment and
interruption probability can be better modeled by combining
the spot instance availability and interruption frequency
datasets, and providing the historical information can open
up many opportunities for further research.

Usefulness of spot instance availability informa-
tion: By referencing availability information from spot
instance datasets, different types of applications can prepare
a plan to react to spot instance interruptions. Son et al.
proposed DeepSpotCloud [31] to run DNN training tasks
using GPU spot instances located globally. Big data analysis
tasks are generally conducted with Hadoop [12, 16], and
SeeSpotRun [11] proposed running Hadoop MapReduce
tasks using spot instances. Flint [44] and Tr-Spark [53]
proposed a system to run a distributed big data processing
engine, Apache Spark [55], using spot instances. Using
spot instances, online web services [2, 18], batch process-
ing jobs [35, 47], and parallel processing of independent
tasks [50] while mitigating the straggler effect due to
transient servers [4] have been proposed. ExoSphere [46]
proposed a portfolio modeling for applications with dif-
ferent levels of interruption-tolerance and cost reduction
expectations. The findings in this paper are complement
the aforementioned work that heavily used spot instances
because the historical spot placement availability informa-
tion can help to improve the accuracy of the spot instance
availability prediction, which is no longer possible with the
spot price dataset.

7. Extending Service for Various Cloud Ven-
dors

The functionalities of the proposed data archive service
and this paper are mainly focused on AWS Spot instances.
One of our actively ongoing work is to add spot instance
datasets of various cloud service vendors. Microsoft Azure
provides current spot instance price information via the
API and web portal service. Azure provides spot instance
availability and interruption ratio information only from its
web portal. Google Cloud provides the current spot instance
price only from its web portal. Considering that most cloud
vendors provide only current information with a limited
data access method, accessing the spot dataset through
the proposed data archive service will greatly enhance
cloud usage from various vendors with numerous research
opportunities.

To expand SpotLake service to provide spot instance
dataset from various cloud vendors, we have to develop a
data scheme for distinct datasets from multiple vendors as
they provide a different set of spot instance information.
Despite the distinct information, a global key would help
more complex analyses such as composite spot instance
analysis over the multiple cloud vendors. For instance,
we are currently developing data collection for multiple
vendors using the timestamp as a global key, and it helps
to understand temporal characteristics of spot instance
availability pattern of different cloud providers. Other
than the timestamp, adding more global keys such as
hardware details are beneficial to analyze and compare
the spot instance characteristics from various aspects and
help to find optimal spot resources for diverse workloads.
Comparing spot instances of multiple vendors in a single
place can provide a great opportunity for optimal resource
usage and serve to enhance multi-cloud service, which is
deemed to be the direction of cloud computing evolution [10,
28].

8. Conclusion

The spot instance provided a more affordable way to use
cloud instances, and the spot price history dataset was a
valuable source of information to predict spot instance
availability. However, as the price change became less
volatile, most prior work that relied on the spot price
datasets became obsolete. To help users to better utilize
various spot instance datasets, we built a data archive
service that provides historical and current information
of spot instance availability, interruption ratio, and price
datasets that are challenging to assemble due to various data
access constraints. Using the collected data, we performed
a thorough empirical analysis of the spot instance behavior
to determine how different spot datasets represent the
instance availability. We also presented the applicability
of the proposed historical spot instance dataset archive by
applying a simple machine learning model that enhances
the prediction accuracy of future spot instance availability.
The proposed system is currently publicly available, and

252

we are sure that it will enhance the system research in the
field of optimal cloud resource usage with spot instances.

Acknowledgments

We would like to thank anonymous reviewers and
program chairs for their insightful comments and feed-
back. Special thanks to Chaelim Heo, who helped the
SpotLake web service front-end implementation. This work
is supported by the National Research Foundation (NRF)
Grant funded by the Korean Government (MSIP) (No. NRF-
2022R1A5A7000765 and NRF-2020R1A2C1102544), AWS
Cloud Credits for Research program, and the SW Star Lab
(RS-2022-00144309) of IITP.

References

[1] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing amazon ec2 spot instance pricing,” ACM Trans.
Econ. Comput., vol. 1, no. 3, sep 2013. [Online]. Available:
https://doi.org/10.1145/2509413.2509416

[2] A. Ali-Eldin, J. Westin, B. Wang, P. Sharma, and P. Shenoy, “Spotweb:
Running latency-sensitive distributed web services on transient
cloud servers,” in Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–12. [Online]. Available: https://doi.org/10.1145/3307681.3325397

[3] S. Alkharif, K. Lee, and H. Kim, “Time-series analysis for price
prediction of opportunistic cloud computing resources,” in Proceedings
of the 7th International Conference on Emerging Databases, W. Lee,
W. Choi, S. Jung, and M. Song, Eds. Singapore: Springer Singapore,
2018, pp. 221–229.

[4] P. Ambati, D. Irwin, P. Shenoy, L. Gao, A. Ali-Eldin, and J. Albrecht,
“Understanding synchronization costs for distributed ml on transient
cloud resources,” in 2019 IEEE International Conference on Cloud
Engineering (IC2E), 2019, pp. 145–155.

[5] M. Baughman, S. Caton, C. Haas, R. Chard, R. Wolski, I. Foster, and
K. Chard, “Deconstructing the 2017 changes to aws spot market
pricing,” in Proceedings of the 10th Workshop on Scientific Cloud
Computing, ser. ScienceCloud ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 19–26. [Online]. Available:
https://doi.org/10.1145/3322795.3331465

[6] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[7] A. W. S. Blogs, “New amazon ec2 spot pricing model,” https://aws.
amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/, 2017.

[8] A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz,
and M. Langhammer, “Beyond peak performance: Comparing the real
performance of ai-optimized fpgas and gpus,” in 2020 International
Conference on Field-Programmable Technology (ICFPT), 2020, pp. 10–
19.

[9] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[10] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.
Gonzalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney
et al., “The sky above the clouds,” arXiv preprint arXiv:2205.07147,
2022.

[11] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and
C. Krintz, “See spot run: Using spot instances for MapReduce
workflows,” in 2nd USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 10). Boston, MA: USENIX Association, Jun. 2010.
[Online]. Available: https://www.usenix.org/conference/hotcloud-10/
see-spot-run-using-spot-instances-mapreduce-workflows

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[13] T. Duong-Ba, T. Tran, T. Nguyen, and B. Bose, “A dynamic virtual
machine placement and migration scheme for data centers,” IEEE
Transactions on Services Computing, vol. 14, no. 2, pp. 329–341, 2021.

[14] N. Ekwe-Ekwe and A. Barker, “Location, location, location: Exploring
amazon ec2 spot instance pricing across geographical regions,” in
2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), 2018, pp. 370–373.

[15] J. Forrest, T. Ralphs, S. Vigerske, LouHafer, B. Kristjansson,
jpfasano, EdwinStraver, M. Lubin, H. G. Santos, rlougee, and
M. Saltzman, “coin-or/cbc: Version 2.9.9,” Jul. 2018. [Online].
Available: https://doi.org/10.5281/zenodo.1317566

[16] A. S. Foundation, “Apache hadoop,” 2004. [Online]. Available:
http://hadoop.apache.org/

[17] W. Guo, K. Chen, Y. Wu, and W. Zheng, “Bidding for highly
available services with low price in spot instance market,” in
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 191–202.
[Online]. Available: https://doi.org/10.1145/2749246.2749259

[18] X. He, P. Shenoy, R. Sitaraman, and D. Irwin, “Cutting the cost of
hosting online services using cloud spot markets,” in Proceedings
of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 207–218. [Online].
Available: https://doi.org/10.1145/2749246.2749275

[19] M. Hossin and S. M.N, “A review on evaluation metrics for data
classification evaluations,” International Journal of Data Mining &
Knowledge Management Process, vol. 5, pp. 01–11, 03 2015.

[20] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2021.

[21] D. Irwin, P. Shenoy, P. Ambati, P. Sharma, S. Shastri, and A. Ali-
Eldin, “The price is (not) right: Reflections on pricing for transient
cloud servers,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN), 2019, pp. 1–9.

[22] A. W. is New, “Introducing amazon ec2 spot placement score,” 2021.
[Online]. Available: https://aws.amazon.com/about-aws/whats-new/
2021/10/amazon-ec2-spot-placement-score/

[23] B. Javadi, R. K. Thulasiram, and R. Buyya, “Characterizing spot
price dynamics in public cloud environments,” Future Generation
Computer Systems, vol. 29, no. 4, pp. 988–999, 2013, special
Section: Utility and Cloud Computing. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X12001483

[24] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant GPU clusters for DNN
training workloads,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA: USENIX Association, Jul. 2019,
pp. 947–960. [Online]. Available: https://www.usenix.org/conference/
atc19/presentation/jeon

[25] J. Kadupitige, V. Jadhao, and P. Sharma, “Modeling the temporally
constrained preemptions of transient cloud vms,” in Proceedings
of the 29th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 41–52. [Online].
Available: https://doi.org/10.1145/3369583.3392671

[26] M. Khodak, L. Zheng, A. S. Lan, C. Joe-Wong, and M. Chiang, “Learn-
ing cloud dynamics to optimize spot instance bidding strategies,” in
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
2018, pp. 2762–2770.

253

[27] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. " O’Reilly Media,
Inc.", 2017.

[28] M. Łazuka, T. Parnell, A. Anghel, and H. Pozidis, “Search-based
methods for multi-cloud configuration,” in 2022 IEEE International
Conference on Cloud Computing (CLOUD), 2022.

[29] A. Ledenev, “Spotinfo : Open-source spot instance advisor cli tool,”
https://github.com/alexei-led/spotinfo, 2021.

[30] C. C. Lee and D. T. Lee, “A simple on-line bin-packing algorithm,”
J. ACM, vol. 32, no. 3, p. 562–572, jul 1985. [Online]. Available:
https://doi.org/10.1145/3828.3833

[31] K. Lee and M. Son, “Deepspotcloud: Leveraging cross-region gpu
spot instances for deep learning,” in 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017, pp. 98–105.

[32] M. Lumpe, M. B. Chhetri, Q. B. Vo, and R. Kowalcyk, “On estimating
minimum bids for amazon ec2 spot instances,” in 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), 2017, pp. 391–400.

[33] A. Marathe, R. Harris, D. Lowenthal, B. R. de Supinski, B. Rountree,
and M. Schulz, “Exploiting redundancy for cost-effective, time-
constrained execution of hpc applications on amazon ec2,” in
Proceedings of the 23rd International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 279–290.
[Online]. Available: https://doi.org/10.1145/2600212.2600226

[34] E. Medina and E. Dagan, “Habana labs purpose-built ai inference and
training processor architectures: Scaling ai training systems using
standard ethernet with gaudi processor,” IEEE Micro, vol. 40, no. 2,
pp. 17–24, 2020.

[35] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the
cloud,” in 11th International Conference on Autonomic Computing
(ICAC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp.
177–187. [Online]. Available: https://www.usenix.org/conference/
icac14/technical-sessions/presentation/menache

[36] K. Morris, Infrastructure as code: managing servers in the cloud. "
O’Reilly Media, Inc.", 2016.

[37] V. L. Parsons, “Stratified sampling,” Wiley StatsRef: Statistics Reference
Online, pp. 1–11, 2014.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[39] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[40] T.-P. Pham, S. Ristov, and T. Fahringer, “Performance and behavior
characterization of amazon ec2 spot instances,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), 2018, pp.
73–81.

[41] G. Portella, G. N. Rodrigues, E. Nakano, and A. C. Melo,
“Statistical analysis of amazon ec2 cloud pricing models,”
Concurrency and Computation: Practice and Experience, vol. 31,
no. 18, p. e4451, 2019, e4451 cpe.4451. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4451

[42] A. Sarah, K. Lee, and H. Kim, “Lstm model to forecast time
series for ec2 cloud price,” in 2018 IEEE 16th Intl Conf on De-
pendable, Autonomic and Secure Computing, 16th Intl Conf on
Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Aug 2018, pp. 1085–
1088.

[43] A. W. Services, “Spot placement score limitations,”
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
spot-placement-score.html#sps-limitations, 2021.

[44] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint:
Batch-interactive data-intensive processing on transient servers,”
in Proceedings of the Eleventh European Conference on Computer
Systems, ser. EuroSys ’16. New York, NY, USA: Association
for Computing Machinery, 2016. [Online]. Available: https:
//doi.org/10.1145/2901318.2901319

[45] P. Sharma, D. Irwin, and P. Shenoy, “How not to bid the cloud,”
in 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16). Denver, CO: USENIX Association, Jun. 2016.
[Online]. Available: https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/sharma

[46] ——, “Portfolio-driven resource management for transient cloud
servers,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 1, no. 1, pp. 1–23, 2017.

[47] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “Spoton:
A batch computing service for the spot market,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
329–341. [Online]. Available: https://doi.org/10.1145/2806777.2806851

[48] S. Tang, J. Yuan, and X.-Y. Li, “Towards optimal bidding strategy
for amazon ec2 cloud spot instance,” in 2012 IEEE Fifth International
Conference on Cloud Computing, 2012, pp. 91–98.

[49] S. Tyagi and P. Sharma, “Taming resource heterogeneity in distributed
ml training with dynamic batching,” in 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), 2020, pp. 188–194.

[50] P. Varshney and Y. Simmhan, “Autobot: Resilient and cost-effective
scheduling of a bag of tasks on spot vms,” IEEE Transactions on
Parallel & Distributed Systems, vol. 30, no. 07, pp. 1512–1527, jul
2019.

[51] C. Wang, Q. Liang, and B. Urgaonkar, “An empirical analysis of
amazon ec2 spot instance features affecting cost-effective resource
procurement,” in Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, ser. ICPE ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 63–74.
[Online]. Available: https://doi.org/10.1145/3030207.3030210

[52] R. Wolski, J. Brevik, R. Chard, and K. Chard, “Probabilistic guarantees
of execution duration for amazon spot instances,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3126908.3126953

[53] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda,
“Tr-spark: Transient computing for big data analytics,” in Proceedings
of the Seventh ACM Symposium on Cloud Computing, ser. SoCC ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
484–496. [Online]. Available: https://doi.org/10.1145/2987550.2987576

[54] M. Zafer, Y. Song, and K.-W. Lee, “Optimal bids for spot vms in a
cloud for deadline constrained jobs,” in 2012 IEEE Fifth International
Conference on Cloud Computing, 2012, pp. 75–82.

[55] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Presented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). San Jose, CA: USENIX, 2012,
pp. 15–28.

[56] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, ser. SIGCOMM ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
71–84. [Online]. Available: https://doi.org/10.1145/2785956.2787473

254

Appendix

1. Abstract

This artifact describes steps to reproduce figures and
tables on this paper with necessary datasets. We provide
preprocessed data that is downsized from raw data and
source code to reproduce figures and values. To access the
raw dataset with further information, you can check our
official SpotLake web service.

2. Artifact check-list

• Run-time environment: Python 3.10
• Necessary packages: Scipy, Numpy, Pandas, Scikit-

learn, Matplotlib, Seaborn
• Hardware: AWS EC2 t3 micro instance
• Output: Figures(PDF), values of tables
• How much disk space required?: Under 100MB
• How much time is needed to generate figures and

tables?: 1 minute
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License

2.0
• Archived (provide DOI)?: Yes (http://doi.org/10.5281/

zenodo.7084392)

3. Description

3.1. How to access. You can access to preprocessed data
and source code on a public archive platform

• http://doi.org/10.5281/zenodo.7084392

The main contents of the artifacts in the public archive
contain followings:

• Python source code to generate from Figure 3 to 11
• Python source code to generate Table 1, 2, and 3
• Preprocessed data used in the source code
• Generated figures using the source code

4. Installation

These are the installation steps to prepare necessary
packages to generate figures and values of tables.

1) Set up your environment with Python 3.10
2) Download and unzip artifact to your environment
3) Move to codes directory
4) Install python packages using pip install -r require-

ments.txt

5. Evaluation and expected results

After the necessary library installation, you can generate
figures and values by running python codes that are
included in codes directory in the artifact. After running a
figure generation source code, such as figure03-a.py, you
can check the generated PDF format figures on figures
directory. The table value generation source codes, such
as table01.py, does not generate any file, but it prints only
values presented in the tables. The dataset that is referenced
from the source code is stored in the data directory with
a corresponding figure and table indexes in a pickle file
format.

6. Notes

If you want to access the collected raw dataset, detailed
collection methodology, and system implementation source
code, you can visit our official SpotLake web service in
https://spotlake.ddps.cloud. In the website, you can access
the following information.

• Historical spot availability dataset
• SpotLake data collection source code
• SpotLake system implementation source code

255

