forked from UTPB-COSC/UTPB-COSC-6389-Project1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubsetSumProblem.py
259 lines (211 loc) · 10.3 KB
/
SubsetSumProblem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import math
import random
import tkinter as tk
from tkinter import Menu, Canvas, FALSE
import threading
import time
# Number of items in the set
num_items = 20
min_value = 1
max_value = 50
target_value = random.randint(50, 200)
# Backtracking function to find the subset sum
def subset_sum(items, target, partial=[], partial_sum=0, ui=None, iteration=[0]):
if ui:
iteration[0] += 1
ui.update_backtracking(iteration[0], partial_sum, partial) # Pass `partial` to update_backtracking
time.sleep(0.5)
if partial_sum == target:
return partial
if partial_sum > target:
return None
for i in range(len(items)):
remaining = items[i + 1:]
result = subset_sum(remaining, target, partial + [items[i]], partial_sum + items[i], ui, iteration)
if result is not None:
return result
return None
# Particle Swarm Optimization for Subset Sum Problem
class Particle:
def __init__(self, num_items):
self.position = [random.choice([0, 1]) for _ in range(num_items)]
self.velocity = [random.uniform(-1, 1) for _ in range(num_items)]
self.best_position = self.position[:]
self.best_value = float('inf')
def update_velocity(self, global_best_position, w, c1, c2):
for i in range(len(self.velocity)):
r1 = random.random()
r2 = random.random()
cognitive = c1 * r1 * (self.best_position[i] - self.position[i])
social = c2 * r2 * (global_best_position[i] - self.position[i])
disturbance = random.uniform(-0.1, 0.1)
self.velocity[i] = w * self.velocity[i] + cognitive + social + disturbance
def update_position(self):
for i in range(len(self.position)):
if random.random() < 1 / (1 + math.exp(-self.velocity[i])):
self.position[i] = 1
else:
self.position[i] = 0
class PSOSolver:
def __init__(self, items, target, num_particles=30, max_iterations=100, ui=None):
self.items = items
self.target = target
self.num_particles = num_particles
self.max_iterations = max_iterations
self.particles = [Particle(len(items)) for _ in range(num_particles)]
self.global_best_position = [0] * len(items)
self.global_best_value = float('inf')
self.ui = ui
def fitness(self, position):
subset_sum = sum(self.items[i] for i in range(len(position)) if position[i] == 1)
if subset_sum > self.target:
return float('inf')
return abs(self.target - subset_sum)
def solve(self):
for iteration in range(self.max_iterations):
for particle in self.particles:
current_value = self.fitness(particle.position)
if current_value < particle.best_value:
particle.best_value = current_value
particle.best_position = particle.position[:]
if current_value < self.global_best_value:
self.global_best_value = current_value
self.global_best_position = particle.position[:]
for particle in self.particles:
particle.update_velocity(self.global_best_position, w=0.7, c1=1.8, c2=1.8)
particle.update_position()
if self.ui:
self.ui.update_pso(self.global_best_position, iteration, self.global_best_value)
self.ui.update() # Immediately update the UI to reflect the new state
time.sleep(0.2) # Pause to allow visualization
if self.global_best_value == 0:
break
return self.global_best_position if self.global_best_value == 0 else None
# Main UI Class
class SubsetSumUI(tk.Tk):
def __init__(self):
super().__init__()
self.title("Subset Sum Problem")
self.option_add("*tearOff", FALSE)
self.width, self.height = self.winfo_screenwidth(), self.winfo_screenheight()
self.geometry(f"{self.width}x{self.height}+0+0")
self.state("zoomed")
self.canvas = Canvas(self, bg='white') # Set background to white
self.canvas.place(x=0, y=0, width=self.width, height=self.height)
# Menu bar setup
menu_bar = Menu(self)
self['menu'] = menu_bar
menu_SS = Menu(menu_bar)
menu_bar.add_cascade(menu=menu_SS, label='Subset Sum', underline=0)
menu_SS.add_command(label="Generate Set", command=self.generate_set, underline=0)
menu_SS.add_command(label="Solve with Backtracking", command=self.start_backtracking_solver, underline=0)
menu_SS.add_command(label="Solve with PSO", command=self.start_pso_solver, underline=0)
self.items_list = []
self.target = target_value
self.solution = None
self.partial_visuals = []
def generate_set(self):
self.items_list = [random.randint(min_value, max_value) for _ in range(num_items)]
self.clear_canvas()
self.draw_target()
self.draw_items()
def clear_canvas(self):
self.canvas.delete("all")
self.partial_visuals = []
def draw_items(self):
x_start = 100
y_start = 150
for i, value in enumerate(self.items_list):
rect = self.canvas.create_rectangle(x_start, y_start + i * 30, x_start + 100, y_start + (i + 1) * 30,
fill='lightblue')
text = self.canvas.create_text(x_start + 50, y_start + i * 30 + 15, text=str(value), font=('Arial', 14, 'bold'))
self.partial_visuals.append((rect, text))
def draw_target(self):
self.canvas.create_text(150, 100, text=f'Target: {self.target}', font=('Arial', 18, 'bold'), fill='red')
def start_backtracking_solver(self):
if not self.items_list:
self.generate_set()
self.clear_canvas() # Clear previous solution
self.draw_target()
self.draw_items()
threading.Thread(target=self.run_backtracking_solver).start()
def run_backtracking_solver(self):
iteration = [0]
self.solution = subset_sum(self.items_list, self.target, ui=self, iteration=iteration)
self.after(0, self.draw_solution)
def start_pso_solver(self):
if not self.items_list:
self.generate_set()
self.clear_canvas() # Clear previous solution
self.draw_target()
self.draw_items()
threading.Thread(target=self.run_pso_solver).start()
def run_pso_solver(self):
pso_solver = PSOSolver(self.items_list, self.target, ui=self)
pso_solution = pso_solver.solve()
self.solution = [self.items_list[i] for i in range(len(self.items_list)) if pso_solution and pso_solution[i] == 1]
self.after(0, self.draw_solution)
def update_partial(self, partial, partial_sum):
self.clear_partial_highlights()
for value in partial:
for i, item_value in enumerate(self.items_list):
if item_value == value:
rect, text = self.partial_visuals[i]
self.canvas.itemconfig(rect, fill='black')
break
difference = self.target - partial_sum
sign = '+' if difference > 0 else ''
self.canvas.create_text(400, 50, text=f'Current Partial Sum: {partial_sum} (Difference: {sign}{difference})',
font=('Arial', 16, 'bold'), fill='yellow', tag='partial_sum')
def update_backtracking(self, iteration, partial_sum, partial=[]):
self.canvas.delete('iteration_info')
difference = self.target - partial_sum
sign = '+' if difference > 0 else ''
# Highlight the selected stack
self.clear_partial_highlights() # Clear previous highlights
for value in partial:
for i, item_value in enumerate(self.items_list):
if item_value == value:
rect, text = self.partial_visuals[i]
self.canvas.itemconfig(rect, fill='black')
self.canvas.create_text(600, 50, text=f'Backtracking Iteration: {iteration}, Partial Sum: {partial_sum} (Difference: {sign}{difference})', font=('Arial', 16, 'bold'), fill='black', tag='iteration_info')
def clear_partial_highlights(self):
for rect, text in self.partial_visuals:
self.canvas.itemconfig(rect, fill='lightblue')
self.canvas.delete('partial_sum')
def update_pso(self, best_position, iteration, best_value):
self.clear_partial_highlights()
self.canvas.delete('iteration_info')
current_sum = sum(self.items_list[i] for i in range(len(best_position)) if best_position[i] == 1)
difference = current_sum - self.target
sign = '+' if difference > 0 else ''
for i, selected in enumerate(best_position):
if selected == 1:
rect, text = self.partial_visuals[i]
self.canvas.itemconfig(rect, fill='black')
if best_value == 0:
status_text = "Perfect Match Found!"
else:
status_text = f"Current Sum: {current_sum}({sign}{difference})"
self.canvas.create_text(400, 50, text=f'Iteration: {iteration + 1}, {status_text}', font=('Arial', 16, 'bold'), fill='black', tag='iteration_info')
def draw_solution(self):
self.canvas.delete('solution_info')
if not self.solution:
self.canvas.create_text(400, 100, text='No Solution Found', font=('Arial', 18, 'bold'), fill='red', tag='solution_info')
else:
x_start = 250
y_start = 150
solution_sum = sum(self.solution)
difference = solution_sum - self.target
sign = '+' if difference > 0 else ''
self.canvas.create_text(300, 100,
text=f'Solution Found: {solution_sum}({sign}{difference})',
font=('Arial', 18, 'bold'), fill='green', tag='solution_info')
for i, value in enumerate(self.solution):
self.canvas.create_rectangle(x_start, y_start + i * 30, x_start + 100, y_start + (i + 1) * 30,
fill='lightgreen', tag='solution_info')
self.canvas.create_text(x_start + 50, y_start + i * 30 + 15, text=str(value), font=('Arial', 14, 'bold'), tag='solution_info')
# Run the application
if __name__ == '__main__':
ui = SubsetSumUI()
ui.mainloop()