forked from UTPB-COSC/UTPB-COSC-6389-Project1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKnapsack.py
353 lines (296 loc) · 12.7 KB
/
Knapsack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import math
import random
import tkinter as tk
from tkinter import *
# Problem parameters
num_items = 100
frac_target = 0.7
min_value = 128
max_value = 2048
# UI parameters
screen_padding = 25
item_padding = 5
stroke_width = 5
# Genetic Algorithm parameters
num_generations = 1000
pop_size = 50
elitism_count = 2
mutation_rate = 0.05 # Adjusted mutation rate
sleep_time = 100 # in milliseconds
# Helper function to generate a random RGB color
def random_rgb_color():
red = random.randint(0x10, 0xff)
green = random.randint(0x10, 0xff)
blue = random.randint(0x10, 0xff)
hex_color = '#{:02x}{:02x}{:02x}'.format(red, green, blue)
return hex_color
# Class to represent an item with value and color
class Item:
def __init__(self):
self.value = random.randint(min_value, max_value)
self.color = random_rgb_color()
self.x = 0
self.y = 0
self.w = 0
self.h = 0
def place(self, x, y, w, h):
self.x = x
self.y = y
self.w = w
self.h = h
def draw(self, canvas, active=False):
gap = 14
# Draw the rectangle representing the item
if active:
canvas.create_rectangle(self.x,
self.y,
self.x + self.w,
self.y + self.h,
fill=self.color,
outline=self.color,
width=stroke_width)
else:
canvas.create_rectangle(self.x,
self.y,
self.x + self.w,
self.y + self.h,
fill='',
outline=self.color,
width=stroke_width)
# Draw the value text with more spacing
canvas.create_text(self.x + self.w + gap, self.y + self.h / 2, text=f'{self.value}', anchor='w', font=('Arial', 12), fill='black')
# Genetic Algorithm Class
class GeneticAlgorithm:
def __init__(self, items_list, target, pop_size, num_generations, mutation_rate, elitism_count):
self.items_list = items_list
self.target = target
self.pop_size = pop_size
self.num_generations = num_generations
self.mutation_rate = mutation_rate
self.elitism_count = elitism_count
self.population = []
self.generation = 0
self.best_genome = None
# Calculate the sum of the values of items included in the genome
def gene_sum(self, genome):
return sum(item.value for idx, item in enumerate(self.items_list) if genome[idx])
# Fitness function with penalty for exceeding target value
def fitness(self, genome):
total_value = self.gene_sum(genome)
# Penalize if exceeding target, otherwise reward being close to target
if total_value > self.target:
return -abs(total_value - self.target) * 2
return 1 / (1 + abs(self.target - total_value))
# Generate the initial population randomly
def generate_initial_population(self):
self.population = [[random.random() < frac_target for _ in range(len(self.items_list))] for _ in range(self.pop_size)]
# Select parents using Stochastic Universal Sampling (SUS)
def sus_select_parents(self, population, fitnesses):
total_fitness = sum(fitnesses)
point_distance = total_fitness / 2 # Two parents are selected
start_point = random.uniform(0, point_distance)
parents = []
current_sum = 0
for genome, fitness in zip(population, fitnesses):
current_sum += fitness
if len(parents) < 2 and current_sum >= start_point:
parents.append(genome)
start_point += point_distance
return parents[0], parents[1]
# Two-point crossover to generate new offspring
def crossover(self, parent1, parent2):
length = len(parent1)
point1 = random.randint(0, length // 2)
point2 = random.randint(point1 + 1, length - 1)
child = parent1[:point1] + parent2[point1:point2] + parent1[point2:]
return child
# Multi-point mutation for better diversity
def mutate(self, genome):
for i in range(len(genome)):
if random.random() < self.mutation_rate:
genome[i] = not genome[i]
return genome
# Maintain diversity by using fitness sharing
def fitness_sharing(self, population, fitnesses):
diversity_factor = 0.1
shared_fitnesses = []
for i in range(len(population)):
shared_fitness = fitnesses[i]
for j in range(len(population)):
if i != j and self.hamming_distance(population[i], population[j]) < len(population[i]) * diversity_factor:
shared_fitness *= 0.9 # Reduce fitness if similar to others
shared_fitnesses.append(shared_fitness)
return shared_fitnesses
# Calculate Hamming distance between two genomes
def hamming_distance(self, genome1, genome2):
return sum(g1 != g2 for g1, g2 in zip(genome1, genome2))
# Evolve the population to the next generation
def evolve_population(self):
fitnesses = [self.fitness(genome) for genome in self.population]
shared_fitnesses = self.fitness_sharing(self.population, fitnesses) # Use fitness sharing
sorted_population = sorted(zip(self.population, shared_fitnesses), key=lambda x: x[1], reverse=True)
new_population = [genome for genome, _ in sorted_population[:self.elitism_count]]
while len(new_population) < self.pop_size:
parent1, parent2 = self.sus_select_parents([p for p, _ in sorted_population], [f for _, f in sorted_population])
child = self.crossover(parent1, parent2)
child = self.mutate(child)
new_population.append(child)
self.population = new_population
self.best_genome = sorted_population[0][0]
def run_step(self):
if self.generation == 0:
self.generate_initial_population()
self.evolve_population()
self.generation += 1
return self.best_genome, self.generation
# The main UI class
class UI(tk.Tk):
def __init__(self):
tk.Tk.__init__(self)
self.title("Knapsack")
self.option_add("*tearOff", FALSE)
self.width, self.height = self.winfo_screenwidth(), self.winfo_screenheight()
self.geometry("%dx%d+0+0" % (self.width, self.height))
self.state("zoomed")
self.canvas = Canvas(self)
self.canvas.place(x=0, y=0, width=self.width, height=self.height)
self.canvas.configure(bg='white') # Set background to white
self.items_list = []
# Menu bar setup
menu_bar = Menu(self)
self['menu'] = menu_bar
menu_K = Menu(menu_bar)
menu_bar.add_cascade(menu=menu_K, label='Knapsack', underline=0)
menu_K.add_command(label="Generate", command=self.generate_knapsack, underline=0)
menu_K.add_command(label="Get Target", command=self.set_target, underline=0)
menu_K.add_command(label="Run", command=self.start_ga, underline=0)
self.target = 0
# Initialize Genetic Algorithm variables
self.ga = None
def get_rand_item(self):
i1 = Item()
for i2 in self.items_list:
if i1.value == i2.value:
return None
return i1
def add_item(self):
item = self.get_rand_item()
while item is None:
item = self.get_rand_item()
self.items_list.append(item)
def generate_knapsack(self):
self.items_list.clear() # Clear existing items
for i in range(num_items):
self.add_item()
item_max = 0
item_min = 9999
for item in self.items_list:
item_min = min(item_min, item.value)
item_max = max(item_max, item.value)
w = self.width - screen_padding
h = self.height - screen_padding
num_rows = math.ceil(num_items / 6)
row_w = w / 8 - item_padding
row_h = (h - 200) / num_rows
for x in range(0, 6):
for y in range(0, num_rows):
if x * num_rows + y >= num_items:
break
item = self.items_list[x * num_rows + y]
item_w = row_w / 2
item_h = max(item.value / item_max * row_h, 1)
item.place(screen_padding + x * row_w + x * item_padding,
screen_padding + y * row_h + y * item_padding,
item_w,
item_h)
self.clear_canvas()
self.draw_items()
def clear_canvas(self):
self.canvas.delete("all")
def draw_items(self):
for item in self.items_list:
item.draw(self.canvas)
def draw_target(self):
x = (self.width - screen_padding) / 8 * 7
y = screen_padding
w = (self.width - screen_padding) / 8 - screen_padding
h = self.height / 2 - screen_padding
self.canvas.create_rectangle(x, y, x + w, y + h, fill='yellow')
self.canvas.create_text(x + w // 2, y + h + screen_padding, text=f'Target: {int(self.target)}', font=('Arial', 18, 'bold'), fill='green')
def draw_sum(self, item_sum, target):
x = (self.width - screen_padding) / 8 * 6
y = screen_padding
w = (self.width - screen_padding) / 8 - screen_padding
h = self.height / 2 - screen_padding
if target != 0:
h *= (item_sum / target)
else:
h = 0
self.canvas.create_rectangle(x, y, x + w, y + h, fill='orange')
# Calculate the difference between sum and target
difference = item_sum - target
difference_text = f"({'+' if difference > 0 else ''}{int(difference)})" if difference != 0 else ""
# Display sum with difference
sum_text = f'Sum: {int(item_sum)}{difference_text}'
self.canvas.create_text(x + w // 2, y + h + screen_padding,
text=sum_text,
font=('Arial', 18, 'bold'),
fill='blue')
def draw_genome(self, genome, gen_num):
for idx, item in enumerate(self.items_list):
item.draw(self.canvas, active=genome[idx])
x = (self.width - screen_padding) / 8 * 6
y = screen_padding
w = (self.width - screen_padding) / 8 - screen_padding
h = self.height / 4 * 3
self.canvas.create_text(x + w, y + h + screen_padding * 2, text=f'Generation {gen_num}', font=('Arial', 18, 'bold'), fill='red')
def get_item_sum(self, genome):
return sum(item.value for idx, item in enumerate(self.items_list) if genome[idx])
def set_target(self):
target_set = []
for x in range(int(num_items * frac_target)):
item = self.items_list[random.randint(0, len(self.items_list) - 1)]
while item in target_set:
item = self.items_list[random.randint(0, len(self.items_list) - 1)]
target_set.append(item)
total = sum(item.value for item in target_set)
self.target = total
self.clear_canvas()
self.draw_items()
self.draw_target()
def start_ga(self):
if self.target == 0:
self.set_target()
self.ga = GeneticAlgorithm(self.items_list, self.target, pop_size, num_generations, mutation_rate, elitism_count)
self.ga.running = True
self.run_ga_step()
def run_ga_step(self):
if self.ga.generation == 0:
self.ga.generate_initial_population()
self.ga.evolve_population()
self.ga.generation += 1
best_genome, generation = self.ga.best_genome, self.ga.generation
item_sum = self.get_item_sum(best_genome)
# Draw current state
self.clear_canvas()
self.draw_items()
self.draw_genome(best_genome, generation)
self.draw_target()
self.draw_sum(item_sum, self.target)
self.update()
# Print current generation info
print(f'Generation {generation}, Sum: {item_sum}, Fitness: {self.ga.fitness(best_genome)}')
# Check if we have met the target
if item_sum == self.target:
self.ga.running = False
print('Exact solution found!')
elif self.ga.running and self.ga.generation < self.ga.num_generations:
# Continue to next step if target not met and we haven't reached max generations
self.after(sleep_time, self.run_ga_step)
else:
self.ga.running = False
print('Algorithm finished.')
# Instantiate and run the UI
if __name__ == '__main__':
ui = UI()
ui.mainloop()