-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathREADME.Rmd
331 lines (272 loc) · 13.1 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
dpi = 300,
comment = FALSE,
error = FALSE,
warning = FALSE,
fig.height = 4,
fig.width = 8
)
library(ggsankey)
library(dplyr)
library(ggplot2)
library(tidyr)
library(titanic)
library(gapminder)
```
# ggsankey
<!-- badges: start -->
<!-- badges: end -->
The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in `ggplot2`
## Installation
You can install the development version of ggsankey from `github` with:
``` r
# install.packages("devtools")
devtools::install_github("davidsjoberg/ggsankey")
```
## How does it work
[Google](https://developers.google.com/chart/interactive/docs/gallery/sankey) defines a sankey as:
***A sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are called nodes and the connections are called links. Sankeys are best used when you want to show a many-to-many mapping between two domains or multiple paths through a set of stages.***
To plot a sankey diagram with `ggsankey` each observation has a *stage* (called a discrete x-value in `ggplot`) and be part of a *node*. Furthermore, each observation needs to have instructions of which *node* it will belong to in the next *stage*. See the image below for some clarification.
```{r, echo = FALSE}
# Ellips 1
xmiddle <- 2
data <- tibble(x0 = xmiddle, y0 = 180, a = .2, b = 280, angle = 0)
data$m1 <- ifelse(is.null(data$m1), 2, data$m1)
data$m2 <- ifelse(is.null(data$m2), data$m1, data$m2)
n_ellipses <- nrow(data)
n <- 360
data <- data[rep(seq_len(n_ellipses), each = n), ]
points <- rep(seq(0, 2 * pi, length.out = n + 1)[seq_len(n)],
n_ellipses)
cos_p <- cos(points)
sin_p <- sin(points)
x_tmp <- abs(cos_p)^(2 / data$m1) * data$a * sign(cos_p)
y_tmp <- abs(sin_p)^(2 / data$m2) * data$b * sign(sin_p)
data$x <- data$x0 + x_tmp * cos(data$angle) - y_tmp * sin(data$angle)
data$y <- data$y0 + x_tmp * sin(data$angle) + y_tmp * cos(data$angle)
data1 <- data %>%
filter(x >= xmiddle) %>%
arrange(y)
data2 <- data %>%
filter(x <= xmiddle) %>%
arrange(y)
# Ellips 2
xmiddle <- 3.5
data <- tibble(x0 = xmiddle, y0 = 385, a = .07, b = 60, angle = 0)
data$m1 <- ifelse(is.null(data$m1), 2, data$m1)
data$m2 <- ifelse(is.null(data$m2), data$m1, data$m2)
n_ellipses <- nrow(data)
n <- 360
data <- data[rep(seq_len(n_ellipses), each = n), ]
points <- rep(seq(0, 2 * pi, length.out = n + 1)[seq_len(n)],
n_ellipses)
cos_p <- cos(points)
sin_p <- sin(points)
x_tmp <- abs(cos_p)^(2 / data$m1) * data$a * sign(cos_p)
y_tmp <- abs(sin_p)^(2 / data$m2) * data$b * sign(sin_p)
data$x <- data$x0 + x_tmp * cos(data$angle) - y_tmp * sin(data$angle)
data$y <- data$y0 + x_tmp * sin(data$angle) + y_tmp * cos(data$angle)
datat1 <- data %>%
filter(x >= xmiddle) %>%
arrange(y)
datat2 <- data %>%
filter(x <= xmiddle) %>%
arrange(y)
# Ellips 3
xmiddle <- 3
data <- tibble(x0 = xmiddle, y0 = 0, a = .15, b = 600, angle = 0)
data$m1 <- ifelse(is.null(data$m1), 2, data$m1)
data$m2 <- ifelse(is.null(data$m2), data$m1, data$m2)
n_ellipses <- nrow(data)
n <- 360
data <- data[rep(seq_len(n_ellipses), each = n), ]
points <- rep(seq(0, 2 * pi, length.out = n + 1)[seq_len(n)],
n_ellipses)
cos_p <- cos(points)
sin_p <- sin(points)
x_tmp <- abs(cos_p)^(2 / data$m1) * data$a * sign(cos_p)
y_tmp <- abs(sin_p)^(2 / data$m2) * data$b * sign(sin_p)
data$x <- data$x0 + x_tmp * cos(data$angle) - y_tmp * sin(data$angle)
data$y <- data$y0 + x_tmp * sin(data$angle) + y_tmp * cos(data$angle)
datatt1 <- data %>%
filter(x >= xmiddle) %>%
arrange(y)
datatt2 <- data %>%
filter(x <= xmiddle) %>%
arrange(y)
# PLOT
df <- titanic::titanic_train %>%
as_tibble() %>%
drop_na() %>%
make_long(Embarked, Sex, Pclass, Survived)
df <- df %>%
dplyr::mutate(
shift = case_when(
x == "Embarked" & node == "S" ~ 300,
T ~ 0
)
)
ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node, shift = shift)) +
geom_sankey(color = "transparent", fill = "transparent") +
geom_path(data = data1, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_path(data = datat1, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_path(data = datatt1, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_sankey(node.color = "black", flow.color = "black") +
# geom_sankey_label(size = 3, color = "black", fill = "white") +
geom_path(data = data2, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_path(data = datat2, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_path(data = datatt2, aes(x, y), inherit.aes = F, color = "red", linewidth = 1.5) +
geom_text(data = tibble(x = c(3.5, 2, 3.5), y = c(510, 520, -570), label = c("Flow", "Node", "Stage (x)")), aes(x, y, label = label), inherit.aes = F, color = "red", size = 8) +
scale_fill_viridis_d(drop = FALSE) +
scale_x_discrete(expand = scales::expand_range(.2)) +
theme_void(base_size = 18) +
labs(x = NULL) +
theme(legend.position = "none",
plot.title = element_text(hjust = .5)) +
labs(y = NULL,
title = "Principal aesthetics")
# ggsave("sankey_aes.png", dpi = 800, height = 4, width = 8)
```
Hence, to use `geom_sankey` the aesthetics `x`, `next_x`, `node` and `next_node` are required. The last *stage* should point to `NA`. The aesthetics fill and color will affect both *nodes* and *flows*.
To plot a sankey diagram with `ggsankey` each observation has a *stage* (called a discrete x-value in `ggplot`) and be part of a *node*. Furthermore, each observation needs to have instructions of which *node* it will belong to in the next *stage*. See the image below for some clarification.
```{r, echo = FALSE}
ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node, shift = shift)) +
geom_sankey(color = "transparent", fill = "transparent") +
geom_sankey(node.color = "black", flow.color = "black") +
# node fill
# aes fill
geom_text(aes(1.8, 600, label = "fill"), color = "black", inherit.aes = F, size = 8, hjust = 0) +
geom_curve(aes(1.85, 550, xend = 2, yend = 300), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = .3) +
geom_curve(aes(2, 550, xend = 2.2, yend = 300), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = -.3) +
# aes color
geom_text(aes(2.8, 600, label = "color"), color = "black", inherit.aes = F, size = 8, hjust = 0) +
geom_curve(aes(3, 550, xend = 3, yend = 455), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = .3) +
geom_curve(aes(3.07, 550, xend = 3.2, yend = 455), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = -.3) +
# aes shift
geom_text(aes(.55, 100, label = "shift"), color = "black", inherit.aes = F, size = 8, hjust = 0) +
geom_segment(aes(x = 1, xend = 1, y = -100, yend = 200), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches"))) +
scale_fill_viridis_d(option = "A", drop = FALSE) +
scale_x_discrete(expand = scales::expand_range(.2)) +
theme_void(base_size = 18) +
labs(x = NULL) +
theme(legend.position = "none",
plot.title = element_text(hjust = .5)) +
labs(y = NULL,
title = "Additional aesthetics")
# ggsave("sankey_aes.png", dpi = 800, height = 4, width = 8)
```
To control geometries (not changed by data) like fill, color, size, alpha etc for *nodes* and *flows* you can either choose to set a global value that affect both, or you can specify which one you want to alter. For example `node.color = 'black'` will only draw a black line around the nodes, but not the flows (links).
```{r, echo = FALSE}
ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, label = node, shift = shift)) +
geom_sankey(color = "transparent", fill = "transparent") +
geom_sankey(node.color = "black",
node.fill = "#e44436ff",
node.size = .5,
flow.alpha = .7,
flow.color = "#c07a3eff",
flow.fill = "#3b345dff") +
# geom_sankey_label(size = 3, color = "black", fill = "white") +
# space
geom_text(data = tibble(x = c(4.4), y = c(70), label = c("space")), aes(x, y, label = label), inherit.aes = F, color = "black", size = 6) +
geom_errorbar(aes(x = 4, ymin = 35, ymax = 98), inherit.aes = F, color = "black", linewidth = .9, width = .06) +
# width
geom_text(data = tibble(x = 2, y = -545, label = c("width")), aes(x, y, label = label), inherit.aes = F, color = "black", size = 6) +
geom_errorbarh(aes(xmin = 2-.05, xmax = 2+.05, y = -470), inherit.aes = F, color = "black", linewidth = .9, height = 30) +
# node color
geom_text(aes(2.22, 500, label = "node.color"), color = "black", inherit.aes = F, size = 5, hjust = 0) +
geom_curve(aes(2.2, 500, xend = 2, yend = 415), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches"))) +
# node fill
geom_text(aes(1.6, 600, label = "node.fill"), color = "#e44436ff", inherit.aes = F, size = 5, hjust = 0) +
geom_curve(aes(1.7, 560, xend = 2, yend = 300), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = .3) +
# flow color
geom_text(aes(3.92, 500, label = "flow.color"), color = "#c07a3eff", inherit.aes = F, size = 5, hjust = 0) +
geom_curve(aes(3.9, 500, xend = 3.65, yend = 415), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches"))) +
# flow fill
geom_text(aes(3.05, 620, label = "flow.fill"), color = "#3b345dff", inherit.aes = F, size = 5, hjust = 0) +
geom_curve(aes(3.1, 580, xend = 3.2, yend = 400), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = .1) +
# flow alpha
geom_text(aes(3.69, -500, label = "flow.alpha"), color = "black", inherit.aes = F, size = 5, hjust = 0) +
geom_text(aes(3.69, -555, label = "(Transparency)"), color = "black", inherit.aes = F, size = 3, hjust = 0) +
geom_curve(aes(3.65, -500, xend = 3.42, yend = -220), color = "black", inherit.aes = F, arrow = arrow(length = unit(0.1, "inches")), curvature = -.5) +
scale_fill_viridis_d(drop = FALSE) +
scale_x_discrete(expand = scales::expand_range(.2)) +
theme_void(base_size = 18) +
labs(x = NULL) +
theme(legend.position = "none",
plot.title = element_text(hjust = .5)) +
labs(y = NULL,
title = "Control the geometries")
# ggsave("sankey_geom.png", dpi = 800, height = 4, width = 8)
```
## Basic usage
### geom_sankey
A basic sankey plot that shows how dimensions are linked.
```{r example}
df <- mtcars %>%
make_long(cyl, vs, am, gear, carb)
ggplot(df, aes(x = x,
next_x = next_x,
node = node,
next_node = next_node,
fill = factor(node))) +
geom_sankey() +
scale_fill_discrete(drop=FALSE)
```
And by adding a little pimp.
* Labels with `geom_sankey_label` which places labels in the center of nodes if given the same aesthetics.
* `ggsankey` also comes with custom minimalistic themes that can be used. Here I use `theme_sankey`.
```{r sankey}
ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
geom_sankey(flow.alpha = .6,
node.color = "gray30") +
geom_sankey_label(size = 3, color = "white", fill = "gray40") +
scale_fill_viridis_d(drop = FALSE) +
theme_sankey(base_size = 18) +
labs(x = NULL) +
theme(legend.position = "none",
plot.title = element_text(hjust = .5)) +
ggtitle("Car features")
```
### geom_alluvial
Alluvial plots are very similiar to sankey plots but have no spaces between nodes and start at y = 0 instead being centered around the x-axis.
```{r alluvial}
ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
geom_alluvial(flow.alpha = .6) +
geom_alluvial_text(size = 3, color = "white") +
scale_fill_viridis_d(drop = FALSE) +
theme_alluvial(base_size = 18) +
labs(x = NULL) +
theme(legend.position = "none",
plot.title = element_text(hjust = .5)) +
ggtitle("Car features")
```
### geom_sankey_bump
Sankey bump plots is mix between bump plots and sankey and mostly useful for time series. When a group becomes larger than another it bumps above it.
```{r sankey_bump}
df <- gapminder %>%
group_by(continent, year) %>%
summarise(gdp = (sum(pop * gdpPercap)/1e9) %>% round(0), .groups = "keep") %>%
ungroup()
ggplot(df, aes(x = year,
node = continent,
fill = continent,
value = gdp)) +
geom_sankey_bump(space = 0, type = "alluvial", color = "transparent", smooth = 6) +
scale_fill_viridis_d(option = "A", alpha = .8) +
theme_sankey_bump(base_size = 16) +
labs(x = NULL,
y = "GDP ($ bn)",
fill = NULL,
color = NULL) +
theme(legend.position = "bottom") +
labs(title = "GDP development per continent")
```