-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_audio_net.py
277 lines (218 loc) · 9.9 KB
/
train_audio_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import dataset
import librosa
from torch.utils.data import DataLoader, random_split
import torch
import torch.nn.functional as F
from utils import *
import torchvision.models as models
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
import argparse
import yaml
from pathlib import Path
import pandas as pd
import time
from models import *
from filter import *
from torch.autograd import Variable
import glob
from mel2wav.modules import MelGAN_Generator
LongTensor = torch.cuda.LongTensor
def parse_args():
parser = argparse.ArgumentParser()
# Training parameters
#parser.add_argument("--device", type = str, required = True)
parser.add_argument("--experiment_name", type = str, required = True)
parser.add_argument("--resume_experiment", type = bool, default = False)
parser.add_argument("--epochs", type = int, default = 10000)
parser.add_argument("--batch_size", type = int, default = 64)
parser.add_argument("--load_path", type = str, default = None)
parser.add_argument("--stop_interval", type = int, default = 100)
# Data parameters
parser.add_argument("--sampling_rate", type = int, default = 8000)
parser.add_argument("--segment_length", type = int, default = 8192)
parser.add_argument("--seed", type = int, default = None)
args = parser.parse_args()
return args
def main():
args = parse_args()
root = Path(os.getcwd())
experiment_name = args.experiment_name
device = 'cuda:0'
# Set random seed
if args.seed == None:
manualSeed = random.randint(1, 10000) # use if you want new results
else:
manualSeed = args.seed
random.seed(manualSeed)
torch.manual_seed(manualSeed)
np.random.seed(manualSeed)
# Set up log directory
log_dir = os.path.join(root,'logs')
experiment_dir = os.path.join(log_dir, experiment_name)
checkpoint_dir = os.path.join(experiment_dir,'checkpoints')
visuals_dir = os.path.join(experiment_dir,'visuals')
example_dir = os.path.join(experiment_dir,'examples')
example_audio_dir = os.path.join(example_dir, 'audio')
example_spec_dir = os.path.join(example_dir, 'spectrograms')
if os.path.exists(experiment_dir) and not args.resume_experiment:
print("Experiment with this name already exists, use --resume_experiment to continue.")
exit()
elif not args.resume_experiment:
os.mkdir(experiment_dir)
os.mkdir(example_dir)
os.mkdir(checkpoint_dir)
os.mkdir(example_audio_dir)
os.mkdir(example_spec_dir)
os.mkdir(visuals_dir)
# ##################################
# Dump arguments and create logger #
# ###################################
with open(Path(experiment_dir) / "args.yml", "w") as f:
yaml.dump(args, f)
yaml.dump({'Seed used' : manualSeed}, f)
writer = SummaryWriter(str(experiment_dir))
# Some hyper parameters
num_genders = 2
num_digits = 10
# Meta data and list of data files
annotation_file = '/home/adam/adversarial_learning_speech/audio_mnist/audio_mnist/audioMNIST_meta.json'
train_file_index = librosa.util.find_files('/home/adam/adversarial_learning_speech/audio_mnist/audio_mnist/')
split_ratio = 5
# Build indices for the data
file_index, annotation_index_gender, annotation_index_digit, annotation_index_speaker_id = dataset.build_annotation_index(
train_file_index, annotation_file, balanced_genders = False)
test_annotation_index, train_annotation_index, test_ids, train_ids = dataset.balanced_annotation_split(file_index, annotation_index_gender, annotation_index_digit, annotation_index_speaker_id, split_ratio)
print(test_ids)
print(train_ids)
# Create the dataset
train_data = dataset.AnnotatedAudioDataset(train_annotation_index, args.sampling_rate, args.segment_length
)
test_data = dataset.AnnotatedAudioDataset(
test_annotation_index, args.sampling_rate, args.segment_length
)
n_train = train_data.__len__()
n_test = test_data.__len__()
#Set up models
audio_gender_net = AudioNet(num_genders).to(device)
audio_digit_net = AudioNet(num_digits).to(device)
# Optimizers
opt_gender = torch.optim.Adam(audio_gender_net.parameters(),1e-4, betas = (0.5, 0.9))
opt_digit = torch.optim.Adam(audio_digit_net.parameters(), 1e-4, betas = (0.5, 0.9))
# Put training objects into list for loading and saving state dicts
training_objects = []
training_objects.append(('netGender', audio_gender_net))
training_objects.append(('optGender', opt_gender))
training_objects.append(('netDigit', audio_digit_net))
training_objects.append(('optDigit', opt_digit))
training_objects.sort(key = lambda x : x[0])
# Loss
gender_loss = nn.CrossEntropyLoss()
digit_loss = nn.CrossEntropyLoss()
lowest_loss_digit = 1e+6
lowest_loss_gender =1e+6
counter_digit=0
counter_gender=0
# Dataloaders
train_loader = DataLoader(train_data, batch_size = args.batch_size , num_workers = 2, shuffle = True)
test_loader = DataLoader(test_data, batch_size = 1, num_workers = 1)
iter = 0
best_test_acc_digit = 0
best_test_acc_gender = 0
print("Training initiated, {} epochs".format(args.epochs))
for epoch in range(0, args.epochs):
correct_gender = 0
correct_digit = 0
epoch_start = time.time()
for i, (x, gender, digit, _) in enumerate(train_loader):
audio_digit_net.train()
audio_gender_net.train()
x = torch.unsqueeze(x,1).to(device)
digit = digit.to(device)
gender = gender.to(device)
#---------------------
# Train gender net
#---------------------
opt_gender.zero_grad()
pred_gender, _ = audio_gender_net(x)
audio_gender_loss = gender_loss(pred_gender, gender)
audio_gender_loss.backward()
opt_gender.step()
#---------------------
# Train digit net
#---------------------
opt_digit.zero_grad()
pred_digit, _ = audio_digit_net(x)
audio_digit_loss = digit_loss(pred_digit, digit)
audio_digit_loss.backward()
opt_digit.step()
#---------------------------------------
# Calculate accuracies on training set
#---------------------------------------
predicted = torch.argmax(pred_gender.data, 1)
correct_gender += (predicted == gender).sum()
predicted = torch.argmax(pred_digit.data, 1)
correct_digit += (predicted == digit).sum()
train_accuracy_gender = 100 * correct_gender / n_train
train_accuracy_digit = 100 * correct_digit / n_train
writer.add_scalar("train_digit_acc", train_accuracy_digit, epoch + 1)
writer.add_scalar("train_gender_acc", train_accuracy_gender, epoch + 1)
#---------------------------------------
# Evaluate model on test set
#---------------------------------------
correct_gender = 0
correct_digit = 0
accum_loss_digit = 0
accum_loss_gender = 0
for i, (x, gender, digit, _) in enumerate(test_loader):
audio_digit_net.eval()
audio_gender_net.eval()
x = torch.unsqueeze(x,1).to(device)
digit = digit.to(device)
gender = gender.to(device)
pred_digit, _ = audio_digit_net(x)
pred_gender, _ = audio_gender_net(x)
audio_gender_loss_val = gender_loss(pred_gender, gender)
audio_digit_loss_val = digit_loss(pred_digit,digit)
accum_loss_digit+=audio_digit_loss
accum_loss_gender+=audio_gender_loss
predicted = torch.argmax(pred_gender.data, 1)
correct_gender += (predicted == gender).sum()
predicted = torch.argmax(pred_digit.data, 1)
correct_digit += (predicted == digit).sum()
test_accuracy_gender = 100 * correct_gender / n_test
test_accuracy_digit = 100 * correct_digit / n_test
writer.add_scalar("test_digit_acc", test_accuracy_digit, epoch + 1)
writer.add_scalar("test_gender_acc", test_accuracy_gender, epoch + 1)
print("Epoch {} completed | Time: {:5.2f} s".format(epoch + 1, time.time() - epoch_start))
print("Digit | Train set accuracy: {} % | Test set accuracy: {} %".format(train_accuracy_digit, test_accuracy_digit))
print("Gender | Train set accuracy: {} % | Test set accuracy: {} %".format(train_accuracy_gender, test_accuracy_gender))
print("#____________________________________________________________#")
if lowest_loss_gender > accum_loss_gender:
best_test_acc_gender = test_accuracy_gender
torch.save(audio_gender_net.state_dict(),os.path.join(root, 'audio_gender_net_early_stop_epoch_{}.pt'.format(epoch)))
lowest_loss_gender = accum_loss_gender
counter_gender=0
else:
counter_gender +=1
if lowest_loss_digit > accum_loss_digit :
best_test_acc_digit = test_accuracy_digit
torch.save(audio_digit_net.state_dict(),os.path.join(root, 'audio_digit_net_early_stop_epoch_{}.pt'.format(epoch)))
lowest_loss_digit = accum_loss_digit
counter_digit=0
else:
counter_digit+=1
if counter_gender > args.stop_interval:
lowest_loss_gender = -1
final_acc_gender = test_accuracy_gender
print(final_acc_gender)
print('Not training gender more')
if counter_digit > args.stop_interval:
lowest_loss_digit = -1
final_acc_digit = test_accuracy_digit
print(final_acc_digit)
print('Not training digit more')
if lowest_loss_digit ==-1 and lowest_loss_gender==-1:
exit()
if __name__ =="__main__":
main()