-
Notifications
You must be signed in to change notification settings - Fork 0
/
1-linear_inf.Rmd
76 lines (71 loc) · 2.58 KB
/
1-linear_inf.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Inferring linear constraints
If \(a\), \(b\), \(c\), and \(d\) are real numbers such that
\(a \geq b\) and \(c \geq d\), then
\(a + c \geq b + d\).
We say that \(a + c \geq b + d\) is **inferred** from
\(a \geq b\) and \(c \geq d\).
Casually, we also say that “adding” the two inequalities
gives \(a + c \geq b + d\).
Note that adding inequalities require that the inequalities
to have the same sense; in other words,
adding a mixture of \(\leq\)-inequalities
and \(\geq\)-inequalities is not allowed for obvious reason.
However, adding a mixture
of inequalities having the same sense and equations is valid.
For example, if \(x\) and \(y\) are real numbers satisfying
\begin{align*}
x - 2y & \geq 5 \\
3x + y & = 7,
\end{align*}
then \(x\) and \(y\) must also satisfy \(4x - y \geq 12\).
Going one step further,
we can add scalar multiples of inequalities to obtain new inequalities
under appropriate conditions.
For example, if \(a\geq b\), \(c \leq d\),
\(\alpha \geq 0\), and \(\beta \leq 0\),
then
\(\alpha a + \beta c \geq \alpha b + \beta d\).
In general, suppose that \(\vec{x} \in \RR^n\) satisfies the system
\begin{align}
\begin{split}
\mm{P} \vec{x} & \geq \vec{p} \\
\mm{Q} \vec{x} & \leq \vec{q} \\
\mm{R} \vec{x} & = \vec{r}
\end{split}
(\#eq:mixed-sys)
\end{align}
where
\(\mm{P} \in \RR^{m \times n}\), \(\vec{p} \in \RR^m\),
\(\mm{Q} \in \RR^{m' \times n}\), \(\vec{q} \in \RR^{m'}\),
\(\mm{R} \in \RR^{\bar{m} \times n}\), \(\vec{r} \in \RR^{\bar{m}}\)
for some nonnegative integers \(m, m', \bar{m}\).
If
\(\vec{f} \in \RR^m\) with \(\vec{f} \geq \vec{0}\),
\(\vec{g} \in \RR^{m'}\) with \(\vec{g} \leq \vec{0}\),
and \(\vec{h} \in \RR^{\bar{m}}\),
then \(\vec{x}\) also satisfies
\[ \vec{c}^\T \vec{x} \geq \gamma\]
where
\(\vec{c} =
\vec{f}^\T\mm{P}+ \vec{g}^\T \mm{Q} +\vec{h}^\T \mm{R}\) and
\(\gamma =
\vec{f}^\T\vec{p}+ \vec{g}^\T \vec{q} +\vec{h}^\T \vec{r}\).
We say that the inequality \(\vec{c}^\T \vec{x} \geq \gamma\)
is *inferred* from the system \@ref(eq:mixed-sys).
To simplify the language for describing linear constraint inference,
we often assign labels to the constraints and
write linear combinations of them. For example, say we have the system
\begin{align}
x_1 + 2x_2 & \geq 2 (\#eq:lin-comb-geq) \\
-x_1 + x_2 & \leq 1 (\#eq:lin-comb-leq) \\
3x_1 - x_2 & = -1. (\#eq:lin-comb-eq)
\end{align}
Then
\(2\times\)
\@ref(eq:lin-comb-geq) \(+\)
\((-1)\times\)
\@ref(eq:lin-comb-leq) \(+\)
\@ref(eq:lin-comb-eq)
refers to the inequality \(6x_1+2x_2 \geq 2\) since
\(2(x_1+2x_2)+(-1)(-x_1+x_2)+(3x_1 - x_2)\) gives \(6x_1 + 2x_2\)
and \(2(2) + (-1)(1) + (-1)\) is \(2\).