-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_Clip_Training.py
61 lines (43 loc) · 2.02 KB
/
main_Clip_Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import pandas as pd
import os
from omegaconf import OmegaConf
from Clip_Training.utils import get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup
from Clip_Training.utils import set_seed, mkdir, setup_logger, load_config_file
from Clip_Training.Clip_Training_Script import train
from core.models.model_module_infer import model_module
from Clip_Training.DataLoader import MIMIC_CXR_Dataset
from torch.optim import Adam, AdamW # both are same but AdamW has a default weight decay
import argparse
TRAINER_CONFIG_PATH = 'Clip_Training/clip_train_config.yaml'
def main():
config = load_config_file(TRAINER_CONFIG_PATH)
global logger
# creating directories for saving checkpoints and logs
mkdir(path=config.saved_checkpoints)
mkdir(path=config.logs)
logger = setup_logger("CLIP TRAINING", config.logs, 0, filename="clip_training_logs.txt")
config.device = "cuda" if torch.cuda.is_available() else "cpu"
device = config.device
config.n_gpu = torch.cuda.device_count() # config.n_gpu
set_seed(seed=11, n_gpu=config.n_gpu)
# Load the model
model_load_paths = ['CoDi_encoders.pth']
inference_tester = model_module(model='codi', load_weights=True, data_dir='checkpoints/', pth=model_load_paths,
fp16=False)
clip = inference_tester.net.clip
clip = clip.to(config.device)
del inference_tester
logger.info(f"Training/evaluation parameters {config}")
# Load the dataloader
csv = pd.read_csv('Archive/train_short.csv')
dataset = MIMIC_CXR_Dataset(csv, '256/')
dataloader = DataLoader(dataset, batch_size=4, shuffle=False)
# Now training
global_step, avg_loss = train(config, dataloader, clip, logger)
logger.info("Training done: total_step = %s, avg loss = %s", global_step, avg_loss)
if __name__ == "__main__":
main()