-
Notifications
You must be signed in to change notification settings - Fork 3
/
models_CCVR.py
313 lines (276 loc) · 11.4 KB
/
models_CCVR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# https://github.com/kuangliu/pytorch-cifar
# https://github.com/FrancescoSaverioZuppichini/ResNet
import torch
import torch.nn as nn
import torch.nn.functional as F
norm_type = "BatchNorm"
# function that let you choose between BatchNorm and GroupNorm
def Norm(planes, type="BatchNorm", num_groups=4):
if type == "BatchNorm":
return nn.BatchNorm2d(planes)
if type == "GroupNorm":
return nn.GroupNorm(num_groups, planes)
# BasicConvBlock implements the basic convolution block and also the shortcut block that
# does the dimension matching job (option B -> use 1x1 convolution to increase the channel dimension)
# takes input of in_channels and applies 2 convolutional layers to reduce in to out_channels
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = Norm(planes, type=norm_type)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = Norm(planes, type=norm_type)
# if input and output spatial dimensions don't match, as in the paper there are 2 options:
# - A) identity shortcut with zero padding
# - B) use 1x1 convolution to increase the channel dimension
# option B is implemented
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes,
kernel_size=1, stride=stride, bias=False),
Norm(planes, type=norm_type)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = Norm(planes, type=norm_type)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = Norm(planes, type=norm_type)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = Norm(self.expansion * planes, type=norm_type)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes,
kernel_size=1, stride=stride, bias=False),
Norm(self.expansion * planes, type=norm_type)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
# ResNet50 architecture for CIFAR-10 (images of size 32*32*3)
class ResNet(nn.Module):
# blok type is BasicConvBlock initialized before
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
# 3x3 convolution
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = Norm(64, type=norm_type)
# number of filter are {64,128,256,512} per block [1,2,3,4] respectively
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
# network ends a 10-way fully-connected layer
self.linear = nn.Linear(512 * block.expansion, num_classes)
# each block consists of many convolutional layers, the method _make_layer will generate
# many individual convolutional layers and then stack them into each convolutional block
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4) # average pooling before fully connected layer
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def feature_extractor(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4) # average pooling before fully connected layer
return out
def classifier(self, x):
out = x.view(x.size(0), -1)
out = self.linear(out)
return out
def ResNet50(n_type="BatchNorm"):
global norm_type
norm_type = n_type
return ResNet(Bottleneck, [3, 4, 6, 3])
# # https://github.com/kuangliu/pytorch-cifar
# # https://github.com/FrancescoSaverioZuppichini/ResNet
#
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
#
# import numpy as np
#
# norm_type = "BatchNorm"
#
#
# # function that let you choose between BatchNorm and GroupNorm
# def Norm(planes, type="BatchNorm", num_groups=4):
# if type == "BatchNorm":
# return nn.BatchNorm2d(planes)
# if type == "GroupNorm":
# return nn.GroupNorm(num_groups, planes)
#
#
# # BasicConvBlock implements the basic convolution block and also the shortcut block that
# # does the dimension matching job (option B -> use 1x1 convolution to increase the channel dimension)
# # takes input of in_channels and applies 2 convolutional layers to reduce in to out_channels
#
# class BasicBlock(nn.Module):
# expansion = 1
#
# def __init__(self, in_planes, planes, stride=1):
# super(BasicBlock, self).__init__()
# self.conv1 = nn.Conv2d(
# in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
# self.bn1 = Norm(planes, type=norm_type)
# self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
# stride=1, padding=1, bias=False)
# self.bn2 = Norm(planes, type=norm_type)
#
# # if input and output spatial dimensions don't match, as in the paper there are 2 options:
# # - A) identity shortcut with zero padding
# # - B) use 1x1 convolution to increase the channel dimension
# # option B is implemented
# self.shortcut = nn.Sequential()
# if stride != 1 or in_planes != self.expansion * planes:
# self.shortcut = nn.Sequential(
# nn.Conv2d(in_planes, self.expansion * planes,
# kernel_size=1, stride=stride, bias=False),
# Norm(planes, type=norm_type)
# )
#
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = self.bn2(self.conv2(out))
# out += self.shortcut(x)
# out = F.relu(out)
# return out
#
#
# class Bottleneck(nn.Module):
# expansion = 4
#
# def __init__(self, in_planes, planes, stride=1):
# super(Bottleneck, self).__init__()
# self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
# self.bn1 = Norm(planes, type=norm_type)
# self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
# stride=stride, padding=1, bias=False)
# self.bn2 = Norm(planes, type=norm_type)
# self.conv3 = nn.Conv2d(planes, self.expansion *
# planes, kernel_size=1, bias=False)
# self.bn3 = Norm(self.expansion * planes, type=norm_type)
#
# self.shortcut = nn.Sequential()
# if stride != 1 or in_planes != self.expansion * planes:
# self.shortcut = nn.Sequential(
# nn.Conv2d(in_planes, self.expansion * planes,
# kernel_size=1, stride=stride, bias=False),
# Norm(self.expansion * planes, type=norm_type)
# )
#
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = F.relu(self.bn2(self.conv2(out)))
# out = self.bn3(self.conv3(out))
# out += self.shortcut(x)
# out = F.relu(out)
# return out
#
#
# # ResNet50 architecture for CIFAR-10 (images of size 32*32*3)
# class ResNet(nn.Module):
# # blok type is BasicConvBlock initialized before
# def __init__(self, block, num_blocks, num_classes=10):
# super(ResNet, self).__init__()
# self.in_planes = 64
#
# # 3x3 convolution
# self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
# stride=1, padding=1, bias=False)
# self.bn1 = Norm(64, type=norm_type)
#
# # number of filter are {64,128,256,512} per block [1,2,3,4] respectively
# self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
# self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
# self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
#
# # network ends a 10-way fully-connected layer
# self.linear = nn.Linear(512 * block.expansion, num_classes)
#
# # each block consists of many convolutional layers, the method _make_layer will generate
# # many individual convolutional layers and then stack them into each convolutional block
# def _make_layer(self, block, planes, num_blocks, stride):
# strides = [stride] + [1] * (num_blocks - 1)
# layers = []
# for stride in strides:
# layers.append(block(self.in_planes, planes, stride))
# self.in_planes = planes * block.expansion
# return nn.Sequential(*layers)
#
# def forward(self, x):
# out = F.relu(self.bn1(self.conv1(x)))
# out = self.layer1(out)
# out = self.layer2(out)
# out = self.layer3(out)
# out = self.layer4(out)
# out = F.avg_pool2d(out, 4) # average pooling before fully connected layer
# # out = F.avg_pool2d(out, 2) # TOO LARGE VarCov Matrix 16GB instead of 1.6GB
# return out
#
#
# def feature_extractor(n_type="BatchNorm"):
# global norm_type
# norm_type = n_type
# return ResNet(Bottleneck, [3, 4, 6, 3])
#
#
# class Classifier(nn.Module):
# def __init__(self):
# super(Classifier, self).__init__()
#
# # network ends a 10-way fully-connected layer
# expansion = 4
# # expansion = 16
# num_classes = 10
#
# self.linear = nn.Linear(512 * expansion, num_classes)
#
# def forward(self, x):
# # out = F.avg_pool2d(x, 4) # average pooling before fully connected layer
#
# out = x.view(x.size(0), -1)
# out = self.linear(out)
# return out
#
#
# def classifier():
# return Classifier()