-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
229 lines (190 loc) · 8.93 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import re
import random
import numpy as np
import os.path
import scipy.misc
import shutil
import zipfile
import time
import tensorflow as tf
from glob import glob
from urllib.request import urlretrieve
from tqdm import tqdm
class DLProgress(tqdm):
last_block = 0
def hook(self, block_num=1, block_size=1, total_size=None):
self.total = total_size
self.update((block_num - self.last_block) * block_size)
self.last_block = block_num
def maybe_download_pretrained_vgg(data_dir):
"""
Download and extract pretrained vgg model if it doesn't exist
:param data_dir: Directory to download the model to
"""
vgg_filename = 'vgg.zip'
vgg_path = os.path.join(data_dir, 'vgg')
vgg_files = [
os.path.join(vgg_path, 'variables/variables.data-00000-of-00001'),
os.path.join(vgg_path, 'variables/variables.index'),
os.path.join(vgg_path, 'saved_model.pb')]
missing_vgg_files = [vgg_file for vgg_file in vgg_files if not os.path.exists(vgg_file)]
if missing_vgg_files:
# Clean vgg dir
if os.path.exists(vgg_path):
shutil.rmtree(vgg_path)
os.makedirs(vgg_path)
# Download vgg
print('Downloading pre-trained vgg model...')
with DLProgress(unit='B', unit_scale=True, miniters=1) as pbar:
urlretrieve(
'https://s3-us-west-1.amazonaws.com/udacity-selfdrivingcar/vgg.zip',
os.path.join(vgg_path, vgg_filename),
pbar.hook)
# Extract vgg
print('Extracting model...')
zip_ref = zipfile.ZipFile(os.path.join(vgg_path, vgg_filename), 'r')
zip_ref.extractall(data_dir)
zip_ref.close()
# Remove zip file to save space
os.remove(os.path.join(vgg_path, vgg_filename))
def load_graph(graph_file, use_xla=False):
jit_level = 0
config = tf.ConfigProto()
if use_xla:
jit_level = tf.OptimizerOptions.ON_1
config.graph_options.optimizer_options.global_jit_level = jit_level
with tf.Session(graph=tf.Graph(), config=config) as sess:
gd = tf.GraphDef()
with tf.gfile.Open(graph_file, 'rb') as f:
data = f.read()
gd.ParseFromString(data)
tf.import_graph_def(gd, name='')
ops = sess.graph.get_operations()
return sess.graph, ops
def gen_batch_function(data_folder, image_shape):
"""
Generate function to create batches of training data
:param data_folder: Path to folder that contains all the datasets
:param image_shape: Tuple - Shape of image
:return:
"""
def get_batches_fn(batch_size):
"""
Create batches of training data
:param batch_size: Batch Size
:return: Batches of training data
"""
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
label_paths = {
re.sub(r'_(lane|road)_', '_', os.path.basename(path)): path
for path in glob(os.path.join(data_folder, 'gt_image_2', '*_road_*.png'))}
background_color = np.array([255, 0, 0])
random.shuffle(image_paths)
for batch_i in range(0, len(image_paths), batch_size):
images = []
gt_images = []
for image_file in image_paths[batch_i:batch_i+batch_size]:
gt_image_file = label_paths[os.path.basename(image_file)]
image = scipy.misc.imresize(scipy.misc.imread(image_file), image_shape)
gt_image = scipy.misc.imresize(scipy.misc.imread(gt_image_file), image_shape)
gt_bg = np.all(gt_image == background_color, axis=2)
gt_bg = gt_bg.reshape(*gt_bg.shape, 1)
gt_image = np.concatenate((gt_bg, np.invert(gt_bg)), axis=2)
images.append(image)
gt_images.append(gt_image)
yield np.array(images), np.array(gt_images)
return get_batches_fn
def segment_image(sess, logits, keep_prob, image_input_op, image, image_shape):
"""
Generate test output using the test images
TODO: Get ground-truth data for test image, then loss and IoU can be computed
:param sess: TF session
:param logits: TF Tensor for the logits
:param keep_prob: TF Placeholder for the dropout keep robability
:param image_input_op: TF Placeholder for the image placeholder
:param image: Image as ND array
:param image_shape: Tuple - Shape of image
:return: Output for for each test image
"""
image = scipy.misc.imresize(image, image_shape)
"""
# inference with loss and mean IoU computation:
mean_iou_value, mean_iou_update_op = tf.metrics.mean_iou(ground_truth, prediction, 2)
feed_dict = {keep_prob: 1.0,
image_input_op: [image],
correct_label: [label]}
im_softmax, loss_result, _ = sess.run([tf.nn.softmax(logits), loss, mean_iou_update_op],
feed_dict=feed_dict)
iou_result = sess.run(mean_iou_value)
"""
# inference only with segmentation visualization
feed_dict = {keep_prob: 1.0,
image_input_op: [image]}
im_softmax = sess.run([tf.nn.softmax(logits)],
feed_dict=feed_dict)
im_softmax = im_softmax[0][:, 1].reshape(image_shape[0], image_shape[1])
segmentation = (im_softmax > 0.5).reshape(image_shape[0], image_shape[1], 1)
mask = np.dot(segmentation, np.array([[0, 255, 0, 127]]))
mask = scipy.misc.toimage(mask, mode="RGBA")
street_im = scipy.misc.toimage(image)
street_im.paste(mask, box=None, mask=mask)
return np.asarray(street_im)
def save_inference_samples(runs_dir, model_checkpoint, data_dir, sess, image_shape):
graph = tf.get_default_graph()
saver = tf.train.Saver()
try:
saver.restore(sess, model_checkpoint)
except:
print("Couldn't load model last checkpoint ({}).".format(model_checkpoint))
print("You need to either provide the required checkpoint files or train the network from scratch!")
return
input_image_op = graph.get_tensor_by_name("image_input:0")
logits_op = graph.get_tensor_by_name("decoder_logits:0")
keep_prob = graph.get_tensor_by_name("keep_prob:0")
loss = graph.get_tensor_by_name("decoder_loss:0")
correct_label = graph.get_tensor_by_name("decoder_loss:0")
prediction = graph.get_tensor_by_name("decoder_prediction:0")
ground_truth = graph.get_tensor_by_name("decoder_ground_truth:0")
# Make folder for current run
output_dir = os.path.join(runs_dir, str(time.time()))
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir)
# Run NN on test images and save them to HD
print("Saving test images to: {}".format(output_dir))
data_folder = os.path.join(data_dir, "data_road/testing")
for image_file in glob(os.path.join(data_folder, 'image_2', '*.png')):
image = scipy.misc.imread(image_file)
segmented_image = segment_image(sess, logits_op, keep_prob, input_image_op, image, image_shape)
scipy.misc.imsave(os.path.join(output_dir, os.path.basename(image_file)), segmented_image)
def process_video_image(sess, logits, keep_prob, image_input_op, image_src, image_shape):
# first crop away top of image to correct aspect of `image_shape` to match `image_shape`
image_src_shape = image_src.shape
new_y = (image_shape[0] * image_src_shape[1]) // image_shape[1]
image_crop = image_src[new_y:,:]
return segment_image(sess, logits, keep_prob, image_input_op, image_crop, image_shape)
def save_inference_video_samples(sess, videos, model_checkpoint, video_fps, video_output_folder, image_shape):
from moviepy.editor import VideoFileClip, vfx
graph = tf.get_default_graph()
saver = tf.train.Saver()
try:
saver.restore(sess, model_checkpoint)
except:
print("Couldn't load model last checkpoint ({}).".format(model_checkpoint))
print("You need to either provide the required checkpoint files or train the network from scratch!")
return
input_image_op = graph.get_tensor_by_name("image_input:0")
logits_op = graph.get_tensor_by_name("decoder_logits:0")
keep_prob = graph.get_tensor_by_name("keep_prob:0")
for video in videos:
if not os.path.exists(video_output_folder):
os.makedirs(video_output_folder)
result_path = video_output_folder + os.path.basename(video)
if not os.path.isfile(video):
print("Video {} doesn't exist!".format(video))
else:
clip1 = VideoFileClip(video) #.subclip(*clip_part)
video_slowdown_factor = video_fps / clip1.fps
clip1 = clip1.fx(vfx.speedx, video_slowdown_factor)
white_clip = clip1.fl_image(lambda img: process_video_image(sess, logits_op, keep_prob, input_image_op, img, image_shape))
white_clip.write_videofile(result_path, audio=False, fps=video_fps)