-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
312 lines (273 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
r"""
modified training script of GLU-Net
https://github.com/PruneTruong/GLU-Net
"""
import argparse
import os
import pickle
import random
import sys
import time
from os import path as osp
import numpy as np
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import yaml
from tensorboardX import SummaryWriter
from termcolor import colored
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import data
import utils_training.optimize as optimize
from models.ContextualLoss import ContextualLoss_forward
from models.correspondence import VGG19_feature_color_torchversion
from models.midms import MIDMs
from utils_training.utils import boolean_string, load_checkpoint, parse_list, save_checkpoint, set_distributed
def main_worker(args, parser):
# Setup dataset
dataset_option_setter = data.get_option_setter(args.benchmark)
parser = dataset_option_setter(parser, args.is_train)
args, unknown = parser.parse_known_args()
# Setup seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Setup distributed training
args = set_distributed(args)
device = args.gpu
train_dataloader = data.create_dataloader(args)
print(f"CONFIDENCE MASKING : {args.confidence_masking}")
print(f"WARMUP ITER : {args.warmup_iter}")
# Model
model = MIDMs(
backbone=args.backbone,
use_original_imgsize=False,
phase=args.phase,
label_nc=args.label_nc,
diffusion_iteratiom_num=args.diffusion_iteratiom_num,
diffusion_config_path=args.diffusion_config_path,
diffusion_model_path=args.diffusion_model_path,
pos_embed=args.pos_embed,
confidence_masking=args.confidence_masking,
maskmix=args.maskmix,
device=device,
)
# perceptual loss
vggnet_fix = VGG19_feature_color_torchversion(vgg_normal_correct=True)
vggnet_fix.load_state_dict(torch.load("models/vgg19_conv.pth", map_location="cpu"))
vggnet_fix.eval()
param_model = [
param
for name, param in model.named_parameters()
if ("diff_model.first_stage_model" not in name and "diff_model.model" not in name)
]
diff_backbone = [param for name, param in model.named_parameters() if "diff_model.model" in name]
def count_parameters(model):
return sum(p.numel() for name, p in model.named_parameters() if p.requires_grad and "backbone" not in name)
print(f"The number of parameters: {count_parameters(model)})")
# Optimizer
optimizer = optim.AdamW(
[{"params": param_model, "lr": args.lr}, {"params": diff_backbone, "lr": args.lr_diff_backbone},],
weight_decay=args.weight_decay,
)
# Scheduler
scheduler = (
lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs, eta_min=1e-6, verbose=True)
if args.scheduler == "cosine"
else lr_scheduler.MultiStepLR(
optimizer, milestones=parse_list(args.step), gamma=args.step_gamma, verbose=True,
)
)
if args.pretrained:
# reload from pre_trained_model
model, optimizer, scheduler, start_epoch, best_val = load_checkpoint(
model, optimizer, scheduler, filename=args.pretrained
)
print(f"PRETRAINED LOAD. starts from {start_epoch}")
ERR = model.diff_model.load_state_dict(
torch.load(args.diffusion_model_path, map_location="cpu")["state_dict"], strict=False,
)
print(ERR)
print(f"=> loaded checkpoint from checkpoint {args.diffusion_model_path}")
# now individually transfer the optimizer parts...
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
else:
best_val = 0
start_epoch = 0
torch.cuda.set_device(device)
model.cuda(device)
model = DistributedDataParallel(model, device_ids=[device], output_device=device, find_unused_parameters=True)
for param in vggnet_fix.parameters():
param.requires_grad = False
vggnet_fix.cuda(device)
if not os.path.isdir(args.snapshots):
os.makedirs(args.snapshots, exist_ok=True)
cur_snapshot = args.name_exp
if not osp.isdir(osp.join(args.snapshots, cur_snapshot)):
os.makedirs(osp.join(args.snapshots, cur_snapshot))
with open(osp.join(args.snapshots, cur_snapshot, "args.pkl"), "wb") as f:
pickle.dump(args, f)
with open(os.path.join(args.snapshots, cur_snapshot, "args.yaml"), "w") as f:
yaml.dump(args.__dict__, f, allow_unicode=True, default_flow_style=False)
# create summary writer
save_path = osp.join(args.snapshots, cur_snapshot)
train_writer = SummaryWriter(os.path.join(save_path, "train"))
test_writer = SummaryWriter(os.path.join(save_path, "test"))
contextureLoss = ContextualLoss_forward().cuda(device)
if args.amp:
print("Mixed Precision Mode")
for epoch in range(start_epoch, args.epochs):
scheduler.step(epoch)
train_loss = optimize.train_epoch(
model,
optimizer,
train_dataloader,
device,
epoch,
train_writer,
vggnet_fix,
contextureLoss,
is_amp=args.amp,
hijack_step=args.hijack_step,
warmup_iter=args.warmup_iter,
save_path=save_path,
)
if device == 0:
train_writer.add_scalar("train_epoch/loss", train_loss, epoch)
train_writer.add_scalar("train_epoch/learning_rate", scheduler.get_lr()[0], epoch)
# train_writer.add_scalar('learning_rate_backbone', scheduler.get_lr()[1], epoch)
print(colored("==> ", "green") + "Train average loss:", train_loss)
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"best_loss": 0,
},
save_path,
"epoch_{}.pth".format(epoch + 1),
)
print("traning finished.")
if __name__ == "__main__":
# Argument parsing
parser = argparse.ArgumentParser(description="Training Script")
# Paths
parser.add_argument(
"--name_exp", type=str, default=time.strftime("%Y_%m_%d_%H_%M"), help="name of the experiment to save",
)
parser.add_argument(
"--benchmark", type=str, default="celebahqedge", choices=["deepfashion", "celebahqedge", "lsun_church"],
)
parser.add_argument("--is-train", type=boolean_string, nargs="?", const=True, default=True)
# args
parser.add_argument("--snapshots", type=str, default="./snapshots", help="path to save training results")
parser.add_argument(
"--pretrained", dest="pretrained", default=None, help="path to pre-trained model",
)
parser.add_argument("--start_epoch", type=int, default=-1, help="start epoch")
parser.add_argument("--epochs", type=int, default=4, help="number of training epochs")
parser.add_argument("--batch-size", type=int, default=1, help="training batch size")
parser.add_argument(
"--n_threads", type=int, default=2, help="number of parallel threads for dataloaders",
)
parser.add_argument("--seed", type=int, default=2021, help="Pseudo-RNG seed")
parser.add_argument("--backbone", type=str, default="VQGAN")
parser.add_argument(
"--momentum", type=float, default=0.9, metavar="M", help="SGD momentum (default: 0.9)",
)
parser.add_argument("--weight-decay", type=float, default=0.05, help="weight decay (default: 0.05)")
parser.add_argument(
"--lr", type=float, default=3e-6, metavar="LR", help="learning rate (default: 3e-5)",
)
parser.add_argument(
"--lr_diff_backbone", type=float, default=3e-6, metavar="LR", help="learning rate (default: 3e-6)",
)
parser.add_argument("--scheduler", type=str, default="step", choices=["step", "cosine"])
parser.add_argument("--step", type=str, default="[10, 12, 14, 24]")
parser.add_argument("--step_gamma", type=float, default=0.3)
parser.add_argument(
"--label_nc",
type=int,
default=182,
help="# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.",
)
parser.add_argument(
"--dataroot", type=str, default="/media/dataset1/CelebAMask-HQ",
)
parser.add_argument(
"--max_dataset_size",
type=int,
default=sys.maxsize,
help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.",
)
parser.add_argument(
"--real_reference_probability", type=float, default=0.7, help="self-supervised training probability",
)
parser.add_argument(
"--hard_reference_probability", type=float, default=0.2, help="hard reference training probability",
)
parser.add_argument(
"--preprocess_mode",
type=str,
default="scale_width_and_crop",
help="scaling and cropping of images at load time.",
choices=(
"resize_and_crop",
"crop",
"scale_width",
"scale_width_and_crop",
"scale_shortside",
"scale_shortside_and_crop",
"fixed",
"none",
),
)
parser.add_argument(
"--load_size",
type=int,
default=256,
help="Scale images to this size. The final image will be cropped to --crop_size.",
)
parser.add_argument(
"--crop_size",
type=int,
default=256,
help="Crop to the width of crop_size (after initially scaling the images to load_size.)",
)
parser.add_argument(
"--no_flip", action="store_true", help="if specified, do not flip the images for data argumentation",
)
parser.add_argument("--amp", type=boolean_string, nargs="?", const=True, default=False)
parser.add_argument(
"--phase", type=str, default="e2e_recurrent", choices=["corr", "diff", "e2e", "e2e_recurrent"],
)
parser.add_argument("--hijack_step", type=int, default=100, help="hijack step in inference")
parser.add_argument(
"--warmup_iter", type=int, default=10000, help="matching warmup (note: this is used when phase is e2e)",
)
parser.add_argument(
"--diffusion_iteratiom_num",
type=int,
default=4,
help="# of iterations of diffusion sampling process in training",
)
parser.add_argument(
"--diffusion_config_path", type=str, default="../midms_weight/celeba/pretrained/config.yaml",
)
parser.add_argument(
"--diffusion_model_path", type=str, default="../midms_weight/celeba/pretrained/model.ckpt",
)
parser.add_argument("--pos_embed", type=str, default="conv", choices=["learnable", "loftr", "conv"])
parser.add_argument("--confidence_masking", type=boolean_string, nargs="?", const=True, default=True)
parser.add_argument("--maskmix", type=boolean_string, nargs="?", const=True, default=True)
parser.add_argument("--video_like", type=boolean_string, nargs="?", const=True, default=False)
parser.add_argument("--comment", type=str, default="blablabla...")
# Seed
args = parser.parse_args()
main_worker(args, parser)