-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
147 lines (126 loc) · 5.36 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import os
import pickle
import random
import sys
import time
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from torchvision.utils import save_image
from tqdm import tqdm
import data
from models.midms import MIDMs
from util.util import img_denorm
# random.seed(2021)
# np.random.seed(2021)
# torch.manual_seed(2021)
# torch.cuda.manual_seed(2021)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description="Inference Script")
dataset_option_setter = data.get_option_setter("celebahqedge")
parser.add_argument("--inference_mode", type=str, default="target_fixed", choices=["target_fixed", "evaluation"])
parser.add_argument("--dataroot", type=str, default="/mnt/hdd/dataset/CelebAMask-HQ/CelebAMask-HQ")
parser.add_argument("--finetuned_weight", type=str, default="pretrained/celeba/midms_celebA_finetuned.pth")
parser.add_argument("--pretrained_weight", type=str, default="pretrained/celeba/model.ckpt")
parser.add_argument("--ldm_config", type=str, default="pretrained/celeba/config.yaml")
parser.add_argument("--benchmark", type=str, default="celebahqedge")
parser.add_argument("--batch_size", type=int, default=10)
parser.add_argument("--n_threads", type=int, default=4)
parser.add_argument("--pick", type=int, default=11)
parser.set_defaults(is_train=False)
parser.set_defaults(max_dataset_size=sys.maxsize)
parser.set_defaults(distributed=False)
parser = dataset_option_setter(parser, is_train=False)
args, unknown = parser.parse_known_args()
val_dataloader = data.create_dataloader(args)
model = MIDMs(
backbone="VQGAN",
use_original_imgsize=False,
phase="e2e_recurrent",
label_nc=args.label_nc,
diffusion_iteratiom_num=4,
diffusion_config_path=args.ldm_config,
diffusion_model_path=args.pretrained_weight,
pos_embed="conv",
confidence_masking=True,
)
ERR = model.load_state_dict(torch.load(args.finetuned_weight, map_location="cpu")["state_dict"], strict=False)
print(ERR)
model.set_copy()
model.eval()
model.to("cuda")
os.path.basename(val_dataloader.dataset.__getitem__(0)["path"])
cnt = 0
curr_time = time.strftime("%Y_%m_%d_%H_%M")
os.makedirs(f"result_{curr_time}")
os.makedirs(f"result_{curr_time}/real_images")
os.makedirs(f"result_{curr_time}/fake_images")
pick = args.pick
with torch.no_grad():
pbar = tqdm(enumerate(val_dataloader), total=len(val_dataloader))
for i, mini_batch in pbar:
src = mini_batch["image"].to(device)
ref = mini_batch["ref"].to(device)
if val_dataloader.dataset.__class__.__name__ == "DeepFashionDataset":
input_semantics = mini_batch["label"].to(device)
input_semantics = mini_batch["label"].clone().to(device).float()
mini_batch["label"] = mini_batch["label"][:, :3, :, :]
ref_semantics = mini_batch["label_ref"].clone().to(device).float()
mini_batch["label_ref"] = mini_batch["label_ref"][:, :3, :, :]
trg = mini_batch["label"][:, 0:3].to(device)
ref_trg = mini_batch["label_ref"][:, 0:3].to(device)
weight_mask = 0.0
elif val_dataloader.dataset.__class__.__name__ == "CelebAHQEdgeDataset":
input_semantics = mini_batch["label"].clone().to(device).float()
mini_batch["label"] = mini_batch["label"][:, :1, :, :]
ref_semantics = mini_batch["label_ref"].clone().to(device).float()
mini_batch["label_ref"] = mini_batch["label_ref"][:, :1, :, :]
mini_batch["label"] = mini_batch["label"].long()
mini_batch["label_ref"] = mini_batch["label_ref"].long()
if args.inference_mode == "target_fixed":
input_semantics = (
val_dataloader.dataset.__getitem__(pick)["label"]
.clone()
.float()
.unsqueeze(0)
.repeat(10, 1, 1, 1)
.to(device)
)
mini_batch["label"] = (
val_dataloader.dataset.__getitem__(pick)["label"].long().unsqueeze(0).repeat(10, 1, 1, 1)
)
trg = mini_batch["label"][:, :1].repeat(1, 3, 1, 1).to(device)
ref_trg = mini_batch["label_ref"][:, :1].repeat(1, 3, 1, 1).to(device)
weight_mask = 0.0
else:
trg = None
input_semantics = None
warped_ref, debug_stack, fb_mask = model(
trg,
src,
ref,
input_semantics=input_semantics,
ref_semantics=ref_semantics,
mode="inference",
iter=1,
warmup_iter=0,
)
save_image(
torch.cat([img_denorm(warped_ref), img_denorm(trg), img_denorm(ref)]),
f"result_{curr_time}/{str(i)}_inference.jpg",
nrow=args.batch_size,
)
for in_batch_num, (warped_ref_items, src_items) in enumerate(zip(warped_ref, src)):
img_name = os.path.basename(mini_batch["path"][in_batch_num])
save_image(
img_denorm(warped_ref_items),
f"result_{curr_time}/fake_images/{img_name}",
nrow=1,
padding=0,
normalize=False,
)
save_image(
img_denorm(src_items), f"result_{curr_time}/real_images/{img_name}", nrow=1, padding=0, normalize=False
)