-
Notifications
You must be signed in to change notification settings - Fork 5
/
4_train.lua
184 lines (152 loc) · 6.35 KB
/
4_train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
----------------------------------------------------------------------
-- This script demonstrates how to define a training procedure,
-- irrespective of the model/loss functions chosen.
--
-- It shows how to:
-- + construct mini-batches on the fly
-- + define a closure to estimate (a noisy) loss
-- function, as well as its derivatives wrt the parameters of the
-- model to be trained
-- + optimize the function, according to several optmization
-- methods: SGD, L-BFGS.
--
-- Clement Farabet
----------------------------------------------------------------------
require 'torch' -- torch
require 'xlua' -- xlua provides useful tools, like progress bars
require 'optim' -- an optimization package, for online and batch methods
----------------------------------------------------------------------
-- parse command line arguments
if not opt then
print '==> processing options'
cmd = torch.CmdLine()
cmd:text()
cmd:text('SVHN Training/Optimization')
cmd:text()
cmd:text('Options:')
cmd:option('-save', 'results', 'subdirectory to save/log experiments in')
cmd:option('-visualize', false, 'visualize input data and weights during training')
cmd:option('-plot', false, 'live plot')
cmd:option('-optimization', 'SGD', 'optimization method: SGD | ASGD | CG | LBFGS')
cmd:option('-learningRate', 1e-3, 'learning rate at t=0')
cmd:option('-batchSize', 1, 'mini-batch size (1 = pure stochastic)')
cmd:option('-weightDecay', 0, 'weight decay (SGD only)')
cmd:option('-momentum', 0, 'momentum (SGD only)')
cmd:option('-t0', 1, 'start averaging at t0 (ASGD only), in nb of epochs')
cmd:option('-maxIter', 2, 'maximum nb of iterations for CG and LBFGS')
cmd:text()
opt = cmd:parse(arg or {})
end
----------------------------------------------------------------------
print '==> defining some tools'
-- classes
classes = {'1','2','3','4','5','6','7','8','9','0'}
-- This matrix records the current confusion across classes
confusion = optim.ConfusionMatrix(classes)
-- Log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
-- Retrieve parameters and gradients:
-- this extracts and flattens all the trainable parameters of the mode
-- into a 1-dim vector
if model then
parameters,gradParameters = model:getParameters()
modelsave = model:clone('weight','bias') -- network to save (cloned so it saves a compact file)
end
----------------------------------------------------------------------
print '==> defining training procedure'
function train()
-- epoch tracker
epoch = epoch or 1
-- local vars
local time = sys.clock()
-- shuffle at each epoch
shuffle = torch.randperm(trsize)
-- do one epoch
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
for t = 1,trainData:size(),opt.batchSize do
-- disp progress
xlua.progress(t, trainData:size())
-- create mini batch
local inputs = {}
local targets = {}
for i = t,math.min(t+opt.batchSize-1,trainData:size()) do
-- load new sample
local input = trainData.data[shuffle[i]]:double()
local target = trainData.labels[shuffle[i]]
table.insert(inputs, input)
table.insert(targets, target)
end
-- create closure to evaluate f(X) and df/dX
local feval = function(x)
-- get new parameters
if x ~= parameters then
parameters:copy(x)
end
-- reset gradients
gradParameters:zero()
-- f is the average of all criterions
local f = 0
-- evaluate function for complete mini batch
for i = 1,#inputs do
-- estimate f
local output = model:forward(inputs[i])
local err = criterion:forward(output, targets[i])
f = f + err
-- estimate df/dW
local df_do = criterion:backward(output, targets[i])
model:backward(inputs[i], df_do)
-- update confusion
confusion:add(output, targets[i])
end
-- normalize gradients and f(X)
gradParameters:div(#inputs)
f = f/#inputs
-- return f and df/dX
return f,gradParameters
end
-- optimize on current mini-batch
if opt.optimization == 'CG' then
config = config or {maxIter = opt.maxIter}
optim.cg(feval, parameters, config)
elseif opt.optimization == 'LBFGS' then
config = config or {learningRate = opt.learningRate,
maxIter = opt.maxIter,
nCorrection = 10}
optim.lbfgs(feval, parameters, config)
elseif opt.optimization == 'SGD' then
config = config or {learningRate = opt.learningRate,
weightDecay = opt.weightDecay,
momentum = opt.momentum,
learningRateDecay = 5e-7}
optim.sgd(feval, parameters, config)
elseif opt.optimization == 'ASGD' then
config = config or {eta0 = opt.learningRate,
t0 = trsize * opt.t0}
_,_,average = optim.asgd(feval, parameters, config)
else
error('unknown optimization method')
end
end
-- time taken
time = sys.clock() - time
time = time / trainData:size()
print("\n==> time to learn 1 sample = " .. (time*1000) .. 'ms')
-- print confusion matrix
print(confusion)
-- update logger/plot
trainLogger:add{['% mean class accuracy (train set)'] = confusion.totalValid * 100}
if opt.plot then
trainLogger:style{['% mean class accuracy (train set)'] = '-'}
trainLogger:plot()
end
-- save/log current net
local filename = paths.concat(opt.save, 'model.net')
os.execute('mkdir -p ' .. sys.dirname(filename))
--print('==> saving model to '..filename)
--torch.save(filename, modelsave)
-- next epoch
confusion:zero()
epoch = epoch + 1
end