-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathkrig_optim_1d_exh.m
200 lines (162 loc) · 5.75 KB
/
krig_optim_1d_exh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
% krig_optim_1d_exh
% CALL :
% [V_L,B_be,ML,Mbe,ML2,par2_range,nugfrac_range]=krig_optim_1d_exh(pos_known,val_known,V,options);
%
function [V_L,V_be,ML,Mbe,ML2,par2_range,nugfrac_range]=krig_optim_1d_exh(pos_known,val_known,V,options);
if isfield(options,'par2_range')
par2_range=options.par2_range;
else
par2_range=linspace(1,100,40);
end
if isfield(options,'nugfrac_range')
nugfrac_range=options.nugfrac_range;
else
nugfrac_range=[0:.05:1];
nugfrac_range=linspace(0,1,40);
end
for ipar2=1:length(par2_range);
for inug=1:length(nugfrac_range);
V(2).par2=par2_range(ipar2);
nugfrac=nugfrac_range(inug);
V(1).par1=options.gvar.*nugfrac;
V(2).par1=options.gvar.*(1-nugfrac);
[d1,d2,be,d_diff,L,L2]=krig_blinderror(pos_known,val_known,pos_known,V,options);
ML(ipar2,inug)=L;
ML2(ipar2,inug)=L2;
Mbe(ipar2,inug)=be;
MV{ipar2,inug}=V;
end
disp(format_variogram(V,1))
end
iML=find(max(ML(:))==ML);
iML2=find(max(ML2(:))==ML2);
ibe=find(min(Mbe(:))==Mbe);
V_L=MV{iML(1)};
V_L2=MV{iML2(1)};
V_be=MV{ibe(1)};
if (isfield(options,'pos_known_all'))
pos_est=options.pos_known_all;
rr=.1*abs(max(options.pos_known_all)-min(options.pos_known_all));
pos_est=linspace(min(options.pos_known_all)-rr,max(options.pos_known_all)+rr,100)+rand(1).*.0001;
else
rr=.1*abs(max(pos_known)-min(pos_known));
pos_est=linspace(min(pos_known)-rr,max(pos_known)+rr,100)+rand(1).*.0001;
end
xrange=[min(pos_est) max(pos_est)];
if (isfield(options,'val_known_all'))
yrange=[min(options.val_known_all(:,1)) max(options.val_known_all(:,1))];
else
yrange=[min(val_known(:,1)) max(val_known(:,1))];
end
yrange=yrange+[-.1 .1].*abs(diff(yrange));
[d_L,v_L]=krig(pos_known,val_known,pos_est(:),V_L,options);
[d_L2,v_L2]=krig(pos_known,val_known,pos_est(:),V_L2,options);
[d_be,v_be]=krig(pos_known,val_known,pos_est(:),V_be,options);
if length(iML)>1
disp(sprintf('More than one optimal ML solution'))
for i=1:length(iML)
disp(format_variogram(MV{iML(i)}))
end
end
if length(ibe)>1
disp(sprintf('More than one optimal BE solution'))
for i=1:length(ibe)
disp(format_variogram(MV{ibe(i)}))
end
end
subplot(2,3,1)
imagesc(par2_range,nugfrac_range,ML2');
xlabel('Range');ylabel('Nugget proportion')
title('L2')
colorbar
hold on;plot(V_L2(2).par2,V_L2(1).par1./sum([V_L2.par1]),'w.','Markersize',20);hold off
subplot(2,3,2)
imagesc(par2_range,nugfrac_range,ML');
xlabel('Range');ylabel('Nugget proportion')
title('Likelihood')
colorbar
hold on;plot(V_L(2).par2,V_L(1).par1./sum([V_L.par1]),'w.','Markersize',20);hold off
subplot(2,3,3)
imagesc(par2_range,nugfrac_range,-log(Mbe)');
xlabel('Range');ylabel('Nugget proportion')
title('-CrossValidationError')
colorbar
hold on;plot(V_be(2).par2,V_be(1).par1./sum([V_be.par1]),'w.','Markersize',20);hold off
subplot(2,3,5)
p1=plot(pos_est,[d_L d_L+sqrt(v_L) d_L-sqrt(v_L)],'r-',pos_known,val_known(:,1),'k*');
hold on
plot(pos_known,val_known(:,1),'g.','MarkerSize',20)
hold off
if (isfield(options,'pos_known_all')&isfield(options,'val_known_all'))
hold on
plot(options.pos_known_all,options.val_known_all,'k.')
hold off
end
set(p1(1),'LineWidth',2)
set(gca,'Xlim',xrange);
set(gca,'Ylim',yrange);
title(sprintf('Max Likelihood : %s',format_variogram(V_L,1)))
subplot(2,3,6)
p2=plot(pos_est,[d_be d_be+sqrt(v_be) d_be-sqrt(v_be)],'b-',pos_known,val_known(:,1),'k*');
set(p2(1),'LineWidth',2)
hold on
plot(pos_known,val_known(:,1),'g.','MarkerSize',20)
hold off
if (isfield(options,'pos_known_all')&isfield(options,'val_known_all'))
hold on
plot(options.pos_known_all,options.val_known_all,'k.')
hold off
end
set(gca,'Xlim',xrange);
set(gca,'Ylim',yrange);
title(sprintf('Min CVE : %s',format_variogram(V_be,1)))
subplot(2,3,4)
p1=plot(pos_est,[d_L2 d_L2+sqrt(v_L2) d_L2-sqrt(v_L2)],'r-',pos_known,val_known(:,1),'k*');
hold on
plot(pos_known,val_known(:,1),'g.','MarkerSize',20)
hold off
if (isfield(options,'pos_known_all')&isfield(options,'val_known_all'))
hold on
plot(options.pos_known_all,options.val_known_all,'k.')
hold off
end
set(p1(1),'LineWidth',2)
set(gca,'Xlim',xrange);
set(gca,'Ylim',yrange);
title(sprintf('Max Likelihood 2: %s',format_variogram(V_L2,1)))
save test1d
figure(9);
plot(pos_known,val_known(:,1),'k.','MarkerSize',30)
hold on
plot(options.pos_known_all,options.val_known_all(:,1),'k.','MarkerSize',10)
plot(pos_est,[d_be],'k-','LineWidth',2)
plot(pos_est,[d_L],'r-','LineWidth',2)
plot(pos_est,[d_L2 ],'b--','LineWidth',2)
hold off
legend('Used data','All data','PE','WPE','ML')
hold on;
p1=plot(pos_est,[d_be d_be+sqrt(v_be) d_be-sqrt(v_be)],'k-');
p2=plot(pos_est,[d_L d_L+sqrt(v_L) d_L-sqrt(v_L)],'r-');
p3=plot(pos_est,[d_L2 d_L2+sqrt(v_L2) d_L2-sqrt(v_L2)],'b--');
hold off
if (isfield(options,'val_known_all'))
[d_L,v_L]=krig(pos_known,val_known,options.pos_known_all,V_L,options);
[d_L2,v_L2]=krig(pos_known,val_known,options.pos_known_all,V_L2,options);
[d_be,v_be]=krig(pos_known,val_known,options.pos_known_all,V_be,options);
highL= find( ((d_L(:,1)+sqrt(v_L))-options.val_known_all)<0);
lowL= find( ((d_L(:,1)-sqrt(v_L))-options.val_known_all)>0);
highL2= find( ((d_L2(:,1)+sqrt(v_L2))-options.val_known_all)<0);
lowL2= find( ((d_L2(:,1)-sqrt(v_L2))-options.val_known_all)>0);
highbe= find( ((d_be(:,1)+sqrt(v_be))-options.val_known_all)<0);
lowbe= find( ((d_be(:,1)-sqrt(v_be))-options.val_known_all)>0);
nL=length(highL)+length(lowL);
nL2=length(highL2)+length(lowL2);
nbe=length(highbe)+length(lowbe);
nd=length(v_L);
txt=sprintf('Percent of data outside 95%% interval : %3.2f(L2) %3.2f(L) %3.2f(be)',nL2./nd,nL./nd,nbe./nd);
watermark(txt);
disp(txt)
end
disp(sprintf('Optimal ML : %s',format_variogram(V_L2)))
disp(sprintf('Optimal WPE : %s',format_variogram(V_L)))
disp(sprintf('Optimal PE : %s',format_variogram(V_be)))