-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune_test.py
327 lines (257 loc) · 13.5 KB
/
finetune_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import subprocess
from transformers import EncoderDecoderModel, BertTokenizerFast, LineByLineTextDataset, Trainer, TrainingArguments, BertTokenizer, BertConfig
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
from transformers import Trainer
import time
import traceback
import json
from sklearn.metrics import mean_squared_error, mean_squared_log_error
from torch.cuda.amp import autocast
from transformers import BartForConditionalGeneration, BertForSequenceClassification, BartTokenizer, AutoModel, AutoModelForCausalLM, T5TokenizerFast, \
T5ForConditionalGeneration, BertForPreTraining, DataCollatorForLanguageModeling, BertForMaskedLM, XLNetTokenizer, XLNetTokenizer, \
XLNetLMHeadModel, DistilBertTokenizerFast, RobertaTokenizer, RobertaModel, RobertaForCausalLM, BertModel, BertLMHeadModel, \
GPT2Tokenizer, DistilBertTokenizer
import logging
from dataloader import MobilityDataLoader
from metrics import np_evaluate
from dataset import MobilityDataset
from transformers import EarlyStoppingCallback
from torch.optim import AdamW
from torch.optim.lr_scheduler import StepLR
import random
from encoder_decoder import EncoderDecoderModel
from bert_encoder import BertModel
import argparse
def build_optimizer(model):
# optimizer = getattr(torch.optim, 'Adam')(
# [{'params': model.encoder.parameters(), 'lr': 5e-6},
# {'params': model.decoder.parameters(), 'lr': 5e-5}],
# weight_decay = 5e-4,
# amsgrad = True
# )
optimizer = getattr(torch.optim, 'Adam')(
[{'params': model.parameters(), 'lr': 5e-5}],
weight_decay = 5e-4,
amsgrad = True
)
return optimizer
def build_lr_scheduler(optimizer):
lr_scheduler = getattr(torch.optim.lr_scheduler, 'ReduceLROnPlateau')(optimizer, mode = 'min', patience = 6, cooldown = 2,
verbose = True)
# lr_scheduler = getattr(torch.optim.lr_scheduler, 'StepLR')(optimizer, step_size = 25, verbose = False)
return lr_scheduler
def eval_model(logger, model, epoch_time, tokenizer, optimizer, epoch, dataloader, model_name, device):
model.eval()
with torch.no_grad():
val_gts, val_res = [], []
running_loss_eval = 0.0
running_loss_clip = 0.0
for i, (inp, out, shuf_labels, enc_mask, dec_mask, labels) in enumerate(dataloader):
inp = torch.LongTensor(inp).to(device)
out = torch.LongTensor(out).to(device)
shuf_labels = torch.LongTensor(shuf_labels).to(device)
enc_mask = torch.LongTensor(enc_mask).to(device)
dec_mask = torch.LongTensor(dec_mask).to(device)
labels = torch.LongTensor(labels).to(device)
optimizer.zero_grad()
output = model.generate(input_ids = inp, do_sample = True, decoder_start_token_id = tokenizer.eos_token_id,
top_k = 40, max_length = 2, \
early_stopping = True, num_beams = 2)
reports = tokenizer.batch_decode(output, skip_special_tokens = True)
ground_truths = tokenizer.batch_decode(out, skip_special_tokens = True)
val_res.extend(reports)
val_gts.extend(ground_truths)
print(f"Time taken for val loss: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
logger.info(f"Time taken generation val: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
gen_values = {}
gts = []
res = []
try:
for i in range(0, len(val_res)):
gen_values[i] = {'gts' : val_gts[i],
'res' : val_res[i]}
gts.append(int(val_gts[i]))
res.append(int(val_res[i]))
if not os.path.exists(f"{model_name}"):
os.makedirs(f"{model_name}")
filename = f"{model_name}/val_{model_name}_{epoch}.json"
with open(filename, "w") as write_file:
json.dump(gen_values, write_file, indent=4)
rmse, mae = np_evaluate(gts, res)
print(f"The val metrics for epoch {epoch}: RMSE: {rmse:.3f} MAE: {mae:.3f}")
logger.info(f"The val metrics for epoch {epoch}: RMSE: {rmse:.3f} MAE: {mae:.3f}")
except Exception as e:
logging.error(traceback.format_exc())
rmse = 100
mae = 100
pass
print(f"Time taken for metrics calculation val: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
logger.info(f"Time taken for metrics calculation val: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
print()
# return rmse, mae, epoch_loss_eval, epoch_loss_clip
return rmse, mae
def train_model(logger, model, tokenizer, criterion, optimizer, scheduler, train_dataloader, val_dataloader, test_dataloader,
model_name, scaler = None, num_epochs = 70, stop = 10, device='cuda', checkpoint = None):
since = time.time()
best_loss = 100000
best_rmse = 1e5
best_mae = 1e5
if checkpoint != None:
print('Checkpoint found')
logger.info('Checkpoint found')
start_epoch = checkpoint['epochs'] + 1
print(f"Resuming training from {start_epoch}")
logger.info(f"Resuming training from {start_epoch}")
del checkpoint
else:
start_epoch = 1
print('------------TRAINING STARTED---------------------')
logger.info('------------TRAINING STARTED---------------------')
early_stopping = 0
for epoch in range(start_epoch, num_epochs + 1):
model.train()
epoch_time = time.time()
print('Epoch {}/{}'.format(epoch, num_epochs))
logger.info('Epoch {}/{}'.format(epoch, num_epochs))
print('-' * 10)
logger.info('-' * 10)
running_loss = 0.0
total = 0
correct = 0
# Iterate over data.
for i, (inp, out, shuf_labels, enc_mask, dec_mask, labels) in enumerate(train_dataloader):
inp = torch.LongTensor(inp).to(device)
out = torch.LongTensor(out).to(device)
shuf_labels = torch.LongTensor(shuf_labels).to(device)
enc_mask = torch.LongTensor(enc_mask).to(device)
dec_mask = torch.LongTensor(dec_mask).to(device)
labels = torch.LongTensor(labels).to(device)
optimizer.zero_grad()
with autocast():
output = model(input_ids = inp, attention_mask = enc_mask, decoder_input_ids = out, decoder_attention_mask = dec_mask,
labels = labels, shuf_labels = shuf_labels)
loss_ce, loss_clip = output.loss
loss = 0.8 * loss_ce + 0.2 * loss_clip
del inp, out, enc_mask, labels
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), 0.1)
optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / len(train_dataloader)
checkpoint = {'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
'epochs' : epoch,
'early_stopping' : early_stopping}
print('Total Train Loss: {:.4f}'.format(epoch_loss))
logger.info('Total Train Loss: {:.4f}'.format(epoch_loss))
print(f"Time taken for training epoch {epoch}: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
logger.info(f"Time taken for training epoch {epoch}: {(time.time() - epoch_time) // 60:.0f}m {(time.time() - epoch_time) % 60:.0f}")
rmse, mae, eval_loss = eval_model(logger, model, epoch_time, tokenizer, optimizer, epoch, val_dataloader, model_name, device)
if rmse < best_rmse:
early_stopping = 0
best_rmse = rmse
logger.info(best_rmse)
checkpoint = {'state_dict': model.state_dict(),
'epochs' : epoch,
'best_rmse' : best_rmse,
'early_stopping' : early_stopping}
torch.save(checkpoint, f"bmobility_{model_name}.pth")
logger.info('Best checkpoint saved (RMSE)')
elif mae < best_mae:
early_stopping = 0
best_mae = mae
logger.info(best_mae)
checkpoint = {'state_dict': model.state_dict(),
'epochs' : epoch,
'best_mae' : best_mae,
'early_stopping' : early_stopping}
torch.save(checkpoint, f"bmobility_mae_{model_name}.pth")
logger.info('Best checkpoint saved (MAE)')
else:
early_stopping += 1
if early_stopping == stop:
print('Stopping early since RMSE is not improving')
logger.info(f"Stopping early since RMSE is not improving")
break
scheduler.step(rmse)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
logger.info('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Data input settings
parser.add_argument('--log_dir', type=str)
parser.add_argument('--model_name', type=str)
parser.add_argument('--dataset_type', type=str)
parser.add_argument('--seed', type=int)
args = parser.parse_args()
torch.manual_seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
logging.basicConfig(filename=f"{args.log_dir}",
format='%(asctime)s %(message)s',
datefmt="%Y-%m-%d %H:%M:%S",
filemode='a')
logger = logging.getLogger()
logger.setLevel(logging.INFO)
with open(f"{args.dataset_type}/RMPOI_train_input.txt", 'r') as f:
train_input = f.read().split('\n')
with open(f"{args.dataset_type}/train_output.txt", 'r') as f:
train_output = f.read().split('\n')
with open(f"{args.dataset_type}/POI_train_CLS.txt", 'r') as f:
shuf_train_output = f.read().split('\n')
with open(f"{args.dataset_type}/RMPOI_test_input.txt", 'r') as f:
test_input = f.read().split('\n')
with open(f"{args.dataset_type}/test_output.txt", 'r') as f:
test_output = f.read().split('\n')
with open(f"{args.dataset_type}/POI_test_CLS.txt", 'r') as f:
shuf_test_output = f.read().split('\n')
with open(f"{args.dataset_type}/RMPOI_val_input.txt", 'r') as f:
val_input = f.read().split('\n')
with open(f"{args.dataset_type}/val_output.txt", 'r') as f:
val_output = f.read().split('\n')
with open(f"{args.dataset_type}/POI_val_CLS.txt", 'r') as f:
shuf_val_output = f.read().split('\n')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = args.model_name
logger.info(model_name)
# enc_tokenizer = BertTokenizer.from_pretrained("../pretrained_models/bert-base-uncased/")
enc_tokenizer = RobertaTokenizer.from_pretrained("../pretrained_models/roberta-base/")
# enc_tokenizer = XLNetTokenizer.from_pretrained("../pretrained_models/xlnet-base-cased/")
dec_tokenizer = GPT2Tokenizer.from_pretrained("../pretrained_models/gpt2")
dec_tokenizer.pad_token = dec_tokenizer.eos_token
# model = EncoderDecoderModel.from_encoder_decoder_pretrained('../pretrained_models/bert-base-uncased/',
# '../pretrained_models/gpt2')
# model = EncoderDecoderModel.from_encoder_decoder_pretrained('../pretrained_models/xlnet-base-cased/',
# '../pretrained_models/gpt2')
model = EncoderDecoderModel.from_encoder_decoder_pretrained('../pretrained_models/roberta-base/',
'../pretrained_models/gpt2')
model.load_state_dict(torch.load(f"bmobility_{args.model_name}.pth")["state_dict"],
strict = False)
train_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(train_params)
non_train_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
print(non_train_params)
model.to(device)
train_dataloader = MobilityDataLoader(train_input, train_output, shuf_train_output, enc_tokenizer, dec_tokenizer, shuffle = True,
pin_memory = True)
val_dataloader = MobilityDataLoader(val_input, val_output, shuf_val_output, enc_tokenizer, dec_tokenizer, shuffle = False,
pin_memory = True)
test_dataloader = MobilityDataLoader(test_input, test_output, shuf_test_output, enc_tokenizer, dec_tokenizer, shuffle = False,
pin_memory = True)
criterion = nn.CrossEntropyLoss()
# build optimizer, learning rate scheduler
optimizer = build_optimizer(model)
lr_scheduler = build_lr_scheduler(optimizer)
rmse, mae = eval_model(logger, model, time.time(), dec_tokenizer, optimizer, 1, test_dataloader, model_name, device)
logger.info(rmse)
logger.info(mae)