

FieldSecured: A Chrome extension for Autofill
phishing prevention

By Fahad Alarefi, Computer Science Dept.
University of Oregon, Eugene, OR, USA

Abstract—This report analyzes the possible

ways to prevent recently discovered design
vulnerability in the Chrome browser. After
analyzing the methods of prevention, it had
been concluded that the best way for protection
is to use a Chrome extension. Therefore, an
extension called FieldSecured was developed
and then published to Google Web Store. The
extension’s details of design and
implementation are discussed in this report.

Keywords—chrome, browser security, autofill,
phishing, form phishing

I. INTRODUCTION
Internet access is continuously increasing over

the world; people with different backgrounds and
education are getting access to that network.
Attackers interests come with the increase of
Internet users; therefore the security of the Internet
should be an interest of government and policy
makers. Because using the audience little
knowledge about technology, attackers can steal
important information.

A technique that attackers use to get victims
data is phishing. Which is about creating webpages
that are identical to trustworthy websites and
request sensitive information such as username and
password. For example, a phisher might create a
single webpage that it exactly similar to a us-bank
and send scam mail congratulating the victim of
winning a lottery and requesting them to login to
their bank account to redeem their prize. From that
point the attacker will receive numerous amount of
login attempts from the victims and there is a high
potential that most of login info received are
correct credential.

Autofill is a feature that was introduced in 2011
to make the process of filling forms easier and
more accurate [1]. Chrome desktop and
smartphone users have the option to turn it off,
however, it’s turned on by default. The feature
provides a faster way for filling forms. By a one
click, it will fill all input fields it can recognize,

despite the possibility that some of the fields are
unseen. Google has found that with feature, users
complete forms up to 30% faster [1].

Autofill is the most popular desktop browser,
with 64% market [8], and this feature is turned by
default. Therefore, many users are considered
viable victims. And Autofill phishing might pose a
great danger to that user base. This paper will
analyze the security flaw, and discuss the proposed
solution, FieldSecured, which is a browser
extension that solves the problem adequately.

II. PROBLEM
A. Origin of the Problem

Chrome Autofill form phishing is a design flaw
in the desktop and mobile browsers. By requesting
normal data, like username and password, the
attacker can receive much more information than
what the user thinks. Resulting in leaked personal
information without user’s consent. However, there
are no current incidents from any websites.

The design flaw was recently pointed out, in
January 2017, by the Finnish web developer
Viljami Kuosmanen [12]. Since than, many news
outlets had exposed the problem to the public,
including The Guardian [10], The Register, and
Lifehacker [11]. Also, developers have been
posting it in the browser developers community
since a long time.

The problem was first discovered in 2012
through Issue 132135 of the Chromium bugs report
forum. The author suggested that Chrome should
not fill those “hidden” fields but leave them empty.
In 2017, a project team has acknowledged that they
are working on it but have no solutions yet [3]. It
has been more than 5 years and the problem is not
solved from Google.

B. How it Can be Exploited
As it pointed out by a Google engineer, Chrome

doesn’t respect developer’s option of opting out of
the Autofill. Ido Green states that web developers
have the option to turn off the autocomplete
feature, by adding autocomplete=”off”, however,

Google chrome will respect that tag for
autocomplete functionality but will overpass that
option to apply forms Autofill [1].

A form field, or form control, is used to submit
data from the user’s browser, to the server. And an
input field is a type of form fields that has many
kinds, like text, checkbox, and email.

Autofill supports many kinds of input fields
including select, checkbox, and text. The way it
works is by matching the input field’s name-tag
against the user’s cloud-based “addresses”
database. When a matching address is found, the
browser will show a list, see Fig. 1, of all matching
addresses that it found. If the user clicked one of
the list-items than the browser will Autofill the
requested field in addition to any field in the form
that has a matching name-tag.

For example, if the user is filling a form and
started typing, or clicked the white space, in the
email field, then browser will look for any email
that starts with the typed text. If any found, then
the browser will search the whole form looking for
additional fields it can fill. When the user hovers
an option from the list, the browser will instantly
Autofill matched input fields. To distinguish it
from user-filled ones, Autofill-filled fields are
marked by a yellow background.

In case this vulnerability is exploited then the
website will receive more information then what
the user has filled. For instance, Fig. 2 shows the
text fields that are shown to the user when they
filled the form. In this case, the user can only see
two fields, email and name. An ordinary user will
not have doubt that there are more hidden fields.
Yet in that same page, there are many more
“hidden” fields that are shifted to the far left. As
seen in Fig. 3, after the user submitted the form, the
website received sensitive data like phone number
and home address.

C. Browser Processing Model
WHATWG HTML5 standard has given more

attention to the autocomplete field; the specs have
a full section discussing the ways to implementing
a standardized set of field-names (2). The
initiative’s goal is to make all browser’s
autocomplete act on similar way, to make it easier
and more efficient for the developer. For instance,
Autofill detail tokens were introduced to group a
section of form’s fields together so that the browser
won’t fill the fields altogether. By replacing * in

“section-*” and putting it in all field’s
autocomplete tags, the browser will only auto fill
those grouped inputs [2].

If an input field is a part of a form that the user
is filling and the field is out of the human sight,
then the browser will deal with it as if it was
viewable. Since the browser processes the page by
using DOM elements, then it doesn’t recognize
what is included in the user’s viewport, and
therefore, it will fill it with data. Reviewing the
Chromium source code, it’s unclear whether the
fields status are checked against any filters or not.

III. RELATED WORK
A. Journal Reviews

In preparation for this work, I reviewed
multiple works that evaluate the security of
Chrome. In general, many security experts find that
Chrome is one of the most secure browsers in the
industry. A study done by Charles Reis, Adam
Barth, and Carlos Pizano identified three
techniques that any browser developers should use
to help protect users from web malicious-attacks:

• Reducing the vulnerability severity: limit
the damage by applying the least privilege
in the browser’s architecture.

• Reducing the window of vulnerability:
provide a constant updates to users
automatically.

• Reducing the frequency of exposure: by
filtering out known malicious content.

The researchers found that the Google Chrome
team has focused in each of these techniques to
create a very secure browser environment [4].

B. Current Solutions
After looking for current solutions for this

security issue, I found a published browser
extension that was published by a developer called
bramas.fr [5]. The implementation is too simple
and doesn’t provide enough security. The
extension only shows two things: the total number
of Autofill-ed fields and what content is being
filled. As seen in Fig. 4, I think that this solution
damages the user’s overall experience because it
adds a tooltip for every form that the user fills.
Resulting in unstructured overall look and feel. In
addition, it requires the user to count every field

they will be filling and matching it with the shown
total so it changes the main goal of Autofill feature
which ease of use.

C. Autofill in Other Browsers
The autofill feature is implemented

differentially in Firefox and Safari. The two
browser use a more secure way of dealing with
Autofill. In Firefox, the user cannot auto fill all
form’s fields. They must go over each field and
choose the suggested data. However, it’s different
than autocomplete; the browser smartly links the
information provided to the same “address”. On the
other hand, Safari uses the most intuitive way of
implementing Autofill. As in Fig. 5, the browser
allows the user to see all information being filled in
the form before it fills it. This way the browser can
notice the information that should not be
submitted.

IV. DESIGN AND IMPLEMENTATION
At first, I though that the best way to prevent

such attacks is by disabling the Autofill feature
altogether. However, I revised my idea after
implementing FieldSecured because the browser
extension doesn’t cause any disruption to the user’s
regular use, yet it solves the problem nearly
perfectly.

A. Design Goals
In order to achieve the best results, the solution

has to guarantee three main criteria. If those goals
are met in the final product, then it should serve the
user the best experience. The goal are as follows:

• User convenience: In the first place,
Autofill is used for convenience and ease
of use. Therefore, the solution should
provide the user the best browsing
experience with no interruption or
attention.

• Low use of resources: Since the extension
will be working continuously in
background, then the solution should not
consume a lot of computing resources.

• High accuracy of identifying phishing
forms: The solution should be able to
figure out malicious forms with high
accuracy. Without this objective, the
implementation would be useless since
web-phishers are continuously developing.

B. Testing Methods
In order to achieve the last goal, I needed to

develop testing methods and scenarios. So first we
will start with text field display status. There are
three ways a field can get of the user sight: use
type=”hidden” in the field’s input tag, use
display=”none” in the CSS properties, or use CSS
tricks to hide the elements, like to position the
fields to the far left so that it’s out of the user’s
viewport. After testing the three ways, I founded
that Chrome disable’s Autofill for the first two
methods. However, some variations of the third
method can penetrate the browser and cause it to
fill the data.

To test what data can be stolen from the user’s
addresses database, I used a form with all possible
text fields from WHATWG’s list of autocomplete
types [6], and margined all fields, but first and last
name, to -50000px. Then from Chrome setting, I
added a test “address” that has personal
information such as name, address, email, etc.
After tasting the form with the newly added
address, the webpages received more data than
“first and last name”, see Fig. 6. In addition,
many other tricks can overcome Autofill such as
adding opacity: 0; to the style. Or using the CSS
property visibility: hidden; Also, clip-path:
polygon(0px 0px,0px 0px,0px 0px,0px 0px);. All of
these tricks will result in a “hidden” fields that take
space in the page but not seen by the user [7]. I
have tasted all above ways, and found that all of
them can trick Autofill and cause it to fill the data.

C. Ways of Detection
My implementation will detect phishing forms

by looking for three anomalies in the field’s
properties:

• Check whether the field is the user’s
viewport or not. By comparing the
window’s height and width against the
field’s position, it can be concluded that
the field is within the browser’s viewport
or not. This eliminates the possible attacks
of margin: -50000px; and position:
relative; top: -50000px.

• Check whether the field has any CSS
properties from theses: visibility, opacity,
clip-path. And make sure that they are not
used by to phish for data. For opacity,
check if the value is less than 0.5 or not. I

chose that number arbitrary because I think
less then that value might cause the user to
not see it.

D. Implementation
Chrome browser extensions have two parts of

code: a content script, and popup menu code. The
content script is responsible for all the code that
happens in the background. I have setup the
extension to work in any page that matches
["http://*/*", "https://*/*", "file://*/*"]. So it will be
working in all possible pages. Although the
extension will get executed in every page visit, I
have tried to achieve the second goal and use
lowest possible use of resources.

The initial idea of implementation was to make
the code work only when Autofill feature is used in
any of the forms. However, I found that the
browser doesn’t dispatch any special JavaScript
events when Autofill is used. On the other hand,
Chrome adds the pseudo-CSS tag -webkit-autofill
to any field that the feature had executed on.
Therefore, the extension will use this tag to
distinguish Autofill fields.

On any input change event, a code will trigger
checking whether the field is filled by the user or
not. If not, then it will check the visibility of the
input by passing it to the isVisible function. The
function will check the properties detailed in “c.
Ways of Detection”. If the field meets any of them,
then it will add it to an array of potential fields.

As simply explained in Fig. 7, when the user
resizes the window or scrolls down, the code will
trigger and reevaluate all fields in the potential
fields list. This way, it eliminates fields that were
filled by Autofill and located down in the page
(initially unseen by user). So for any Autofill field,
the user has to see the field before it gets
submitted.

Finally, when the user submits the form, the
extension will check out the form and make sure
that it has no unseen Autofill filled fields. In case
there was, then the form will not be submitted and
a message of action will be shown to the user. As
demonstrated in Fig. 8, an attentive message will
be shown in red, and the hidden submitted data will
be printed. The user has two options: report the
website to Google as a malicious website or
continue anyway and submit the data. The first
option will redirect the user to a malicious software
report page maintained by Google. For the

reporting website, another alternative was a
website called stopbadware.org, however,
Google’s website looked more genuine.

V. RESULTS AND ANALYSIS
A. Final Implementation Result

The practicability result of my implementation
is limited to what I created as a test. However, the
result of the extension as a product is an adequately
aesthetic product that has practical functionality.
To the user, as a proof of functionality, the
extension will have a simple popup small page that
has a counter of the total times that the extension
has found a phishing fields, demonstrated in Fig. 9.

B. Analysis
In order to come up with better practical results,

I researched what are the possible ways to hide an
element in CSS. I then used the findings to better
tune the ways my extension can find a “hidden”
field. The result is a Chrome extension that works
continuously in the background and meets all
previously defined goals.

In detail, FieldSecured won’t intervene to the
user’s regular use. Other then extension’s logo
shown in the extensions bar, the user won’t even
notice that something is working in the
background. It won’t print any text in the page
unless a phishing suspicion has happened.

Also, the extension uses the lowest resources
possible. It is in idle state until Autofill use had
happened. So the computation calculations and
checkups won’t be executed until Autofill is used.

In addition, by checking the potential field
against three different techniques of hiding the
field guarantees a high accuracy of identifying
phishing fields.

VI. DISCUSSION OF COMPLICATED
ISSUES

The complexity of web development makes the
goal of perfectly fixing this issue impossible. At
the end, there must be ways to overcome my
implementation. In addition, it is interesting that
there are no ways to know whether an html
element is seen to the human eye or not. I feel that
such function should be provided in JavaScript or

at least, jQuery because it helps web developers in
better designing their pages.

In addition, one issue that makes the extension
not very useful is that these types of phishing
attacks are not common, and barely ever happened.
Because most users use Autofill either for
information about shipping, or billing, or using it to
fill personal information for signup. Both of these
uses require a trusted website owner. Because the
user won’t buy/signup in the first place if the
website is not trusted.

VII. CONCLUSIONS AND LESSONS
LEARNED

The popularity of Chrome browser makes it the
attention of many hackers. The Autofill forms
vulnerability is a basic UI flaw that should had
been fixed a long time a go, yet, the team behind
Chrome has not offered any solutions. Therefore, I
have created a browser extension for Chrome
desktop that attempts to solve the issue. By
following three goals: user convenience, low use of
resource, and high identification accuracy, the
extension resulted in effective approach of solving
the problem. FieldSecured will be published to the
extensions market for free so that users get
protected from this type of attack.

Many lessons were learned throughout the
implementation of this project. Especially, the
architectures of browsers and how do they render
pages. In addition, jQuery was used mainly to
make the process of creating the extension easier
and faster. However, I think that it’s possible to
achieve similar results using JavaScript only.

VIII. FIGURES AND REFERENCES
A. Figures

Figure 1 Shows how the list of addresses are shown [12]

Figure 2 Shows the fields shown to the user [12]

Figure 3 Shows what information has the website received
[12]

Figure 4 demonstrate bramas.fr’s Autofill Checker [5]

Figure 5 Safari’s implementation of Autofill [9]

Figure 6 The results when form is submitted

Figure 7 Flowchart shows how FieldSecured works

Figure 8 What FieldSecured shows when there is a
suspicion of phishing

Figure 9 How FieldSecured is shown to the user

B. References
[1] Green, I. (2015, June). Help users checkout faster with

Autofill | Web | Google Developers. Retrieved March 18,
2018, from
https://developers.google.com/web/updates/2015/06/checkout-
faster-with-autofill?hl=en

[2] WHATWG. (2018, March 16). HTML STANDARD. Retrieved
March 18, 2018, from
https://html.spec.whatwg.org/multipage/form-control-
infrastructure.html#autofill

[3] Chrome's Autofill feature circumvents anti-spam honeypot
hidden form field techniques. (2012, June 11). Retrieved March
18, 2018, from
https://bugs.chromium.org/p/chromium/issues/detail?id=132135

[4] REIS, C., BARTH, A., & PIZANO, C. (2009). Browser
Security: Lessons from Google Chrome. Communications Of
The ACM, 52(8), 45-49.

[5] Bramas.fr. (n.d.). Autofill Checker. Retrieved March 18, 2018,
from https://chrome.google.com/webstore/detail/autofill-
checker/nfdenjdodgbjbcbocechcbkhncakpieb

[6] WHATWG. (n.d.). Autocomplete Types. Retrieved March 18,
2018, from https://wiki.whatwg.org/wiki/Autocomplete_Types

[7] Rathi, B. (2016, July 23). Five Ways to Hide Elements in CSS.
Retrieved March 18, 2018, from
https://www.sitepoint.com/five-ways-to-hide-elements-in-css/

[8] StatCounter Global Stats. (2018, February). Desktop Browser
Market Share Worldwide. Retrieved March 18, 2018, from
http://gs.statcounter.com/browser-market-
share/desktop/worldwide

[9] Grigsby, J. (2017, September 12). Autofill: What web devs
should know, but don't. Retrieved March 18, 2018, from
https://cloudfour.com/thinks/autofill-what-web-devs-should-
know-but-dont/

[10] Gibbs, S. (2017, January 10). Browser autofill used to steal
personal details in new phishing attack. Retrieved February 13,
2018, from
https://www.theguardian.com/technology/2017/jan/10/browser-
autofill-used-to-steal-personal-details-in-new-phising-attack-
chrome-safari

[11] Allan, P. (2017, January 11). Your Browsers Autofill Data Can
Be Phished, Heres How to Stay Safe. Retrieved February 13,
2018, from https://lifehacker.com/your-browsers-autofill-data-
can-be-phished-heres-how-t-1791084371

[12] Kuosmanen, V. (2017, January 07). Browser-autofill-phishing.
Retrieved February 13, 2018, from
https://github.com/anttiviljami/browser-autofill-phishing

