Skip to content

Commit 57d3426

Browse files
committed
Chore: Implement tips by CodeRabbit: analytics, industrial, time series
1 parent 4db673f commit 57d3426

File tree

10 files changed

+45
-44
lines changed

10 files changed

+45
-44
lines changed

docs/explain/analytics/bitmovin.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ first commercial adaptive streaming player and deployed the first
1313
software-defined encoding service that runs on any cloud platform.
1414

1515
The use-case of Bitmovin illustrates why traditional databases are
16-
not capable to deal with so many data records and keep them all
16+
incapable of handling so many data records while keeping them all
1717
available for querying in real time.
1818

1919
> CrateDB enables use cases we couldn't satisfy with other
@@ -46,7 +46,7 @@ with the largest tables comprising around 60 billion playback events in total.
4646

4747
{material-outlined}`analytics;2em`   **Real-time analytics on user events**
4848

49-
<iframe height="300" src="https://www.youtube-nocookie.com/embed/4BPApD0Piyc?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
49+
<iframe height="300" src="https://www.youtube-nocookie.com/embed/4BPApD0Piyc?si=J0w5yG56Ld4fIXfm" title="YouTube: Bitmovin Real-time Analytics on User Events" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
5050

5151
<small>-- [Bitmovin: Improving the streaming experience with real-time analytics]</small>
5252
::::
@@ -59,7 +59,7 @@ stream broadcasting provider, produces billions of rows of data and stores
5959
them in CrateDB, allowing their customers to do analytics on it.
6060

6161
One of their product's subsystems, a video analytics component, required to
62-
serve real-time analytics on very large and fast-moving data, so they needed
62+
serve real-time analytics on massive, fast-moving data, so they needed
6363
to find a performing database at the right cost.
6464

6565
:::{article-info}
@@ -82,7 +82,7 @@ class-container: sd-p-2 sd-outline-muted sd-rounded-1
8282

8383
{material-outlined}`video_camera_back;2em` &nbsp; **Live video broadcasting campaigns**
8484

85-
<iframe height="300" src="https://www.youtube-nocookie.com/embed/IR6hokaYv5g?si=J0w5yG56Ld4fIXfm" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
85+
<iframe height="300" src="https://www.youtube-nocookie.com/embed/IR6hokaYv5g?si=J0w5yG56Ld4fIXfm" title="YouTube: Live Video Broadcasting with CrateDB" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
8686

8787
<small>-- [How Bitmovin uses CrateDB to monitor the biggest live video events]</small>
8888
::::

docs/explain/industrial/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ The complexities of industrial big data are characterized by its high variety,
1818
unstructured features, different data sampling rates, and how these attributes
1919
influence data storage, retention, and integration.
2020

21-
Learn how to use CrateDB in long term storage and analytics scenarios for
21+
Learn how to use CrateDB in long-term storage and analytics scenarios for
2222
industrial / IIoT / Industry 4.0 application scenarios within
2323
engineering, manufacturing, production, and logistics, as well as other
2424
operational domains, or within similar environments where billions of data

docs/explain/industrial/rauch.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ class-container: sd-p-2 sd-outline-muted sd-rounded-1
1111
:::
1212

1313
:::{div} sd-text-muted
14-
Improving OEE with real-time monitoring of 120,000 cans per hour per line.
14+
Improving OEE: Real-time monitoring of 120,000 cans per hour per production line.
1515
:::
1616

1717
:::{rubric} About
@@ -32,11 +32,11 @@ ensure real-time production quality control.
3232
:::{card} Scalable, high-performance database for FMCG
3333
:link: https://cratedb.com/fmcg-database
3434
:link-type: url
35-
CrateDB helps Rauch to identify and predict production issues and gives access
35+
CrateDB helps Rauch to identify and predict production issues and enables access
3636
to production data for many years, with no need for additional infrastructure
3737
while storing one to ten billion records in CrateDB at the same time.
3838

39-
CrateDB enhances FMCG operations by optimizing shopfloor efficiency through
39+
CrateDB enhances FMCG operations by optimizing shop floor efficiency through
4040
real-time equipment monitoring and workflow optimization. It ensures product
4141
quality with integrated quality control measures, reducing defects and waste.
4242
Additionally, CrateDB enhances compliance and traceability by enabling batch

docs/explain/industrial/tgw.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,8 @@ digital twins of physical warehouses around the world. The unique set
149149
of features is suitable for storing and querying complex industrial big data with
150150
high variety, unstructured features, and at different data sampling rates.
151151

152-
**What's inside**
152+
:::{rubric} What's inside
153+
:::
153154

154155
- The Complexity of IoT Data: An examination of the unique properties of
155156
industrial IoT data, including slow-moving structured information and

docs/explain/time-series/fundamentals.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ with CrateDB.
1515

1616
## Getting started
1717

18-
After evaluating [connectivity options](#connect), you would like to get
18+
After evaluating {ref}`connectivity options <connect>`, you would like to get
1919
hands-on with CrateDB. We prepared a few introductory tutorials, some of
2020
them in executable forms, to demonstrate CrateDB's features to work with
2121
time series data on the spot. You may want to use them as starting points

docs/explain/time-series/index.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ Machine Learning on Time Series Data: EDA, Decomposition, AutoML.
6969
:::
7070

7171

72-
:::{grid-item-card} {material-outlined}`manage_history;2em` Long term storage
72+
:::{grid-item-card} {material-outlined}`manage_history;2em` Long-term storage
7373
:link: timeseries-longterm
7474
:link-type: ref
7575
:link-alt: About storing time series data for the long term
@@ -90,17 +90,17 @@ Optimizing storage for historic time series data.
9090
:::{seealso}
9191

9292
**Domains:**
93-
[](#analytics)
94-
[](#industrial)
95-
[](#machine-learning)
96-
[](#metrics-store)
93+
{ref}`analytics`
94+
{ref}`industrial`
95+
{ref}`machine-learning`
96+
{ref}`metrics-store`
9797

9898
**Features:**
99-
[](#connect)
100-
[](#querying)
101-
[](#document)
102-
[](#fulltext)
103-
[](#geospatial)
99+
{ref}`connect`
100+
{ref}`querying`
101+
{ref}`document`
102+
{ref}`fulltext`
103+
{ref}`geospatial`
104104

105105
**Product:**
106106
[Time Series Data]
@@ -114,7 +114,7 @@ Optimizing storage for historic time series data.
114114
Fundamentals <fundamentals>
115115
Advanced analysis <analysis>
116116
video
117-
Long term store <longterm>
117+
Long-term store <longterm>
118118
:::
119119

120120

docs/explain/time-series/longterm.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
(timeseries-longterm)=
22
(timeseries-long-term-storage)=
3-
# Time series long term storage
3+
# Time series long-term storage
44

55
CrateDB stores large volumes of data, keeping it accessible for querying
66
and insightful analysis, even considering historic data records.
@@ -45,12 +45,12 @@ a dedicated layout, and querying using the UNNEST table function.
4545
**CrateDB as metrics and log data store for the long term**
4646

4747
Store and analyze high volumes of system monitoring information.
48-
Read more about using CrateDB as [](#metrics-store).
48+
Read more about using CrateDB as {ref}`metrics-store`.
4949
:::
5050

5151
:::{grid-item}
5252
:columns: 3
53-
{tags-primary}`Long Term Storage`
53+
{tags-primary}`Long-term Storage`
5454
{tags-primary}`Metrics`
5555
{tags-primary}`Logging`
5656
:::
@@ -65,13 +65,13 @@ Read more about using CrateDB as [](#metrics-store).
6565
**CrateDB provides real-time analytics on raw data stored for the long term**
6666

6767
Keep massive amounts of data ready in the hot zone for analytics purposes.
68-
Read more about using CrateDB for [](#analytics).
68+
Read more about using CrateDB for {ref}`analytics`.
6969
:::
7070

7171
:::{grid-item}
7272
:columns: 3
73-
{tags-primary}`Long Term Storage`
74-
{tags-primary}`Real-Time Analytics`
73+
{tags-primary}`Long-term storage`
74+
{tags-primary}`Real-time analytics`
7575
:::
7676

7777
::::

docs/explain/time-series/video.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ CrateDB simplifies the complexity of managing time-series data.
2020
It provides a comprehensive solution for storing, querying, and extracting
2121
insights from large-scale and high-volume time-series datasets.
2222

23-
Learn more about CrateDB and [](#timeseries).
23+
Learn more about CrateDB and {ref}`timeseries`.
2424
:::
2525

2626
:::{grid-item}
@@ -54,7 +54,7 @@ Afterwards, it will demonstrate how to export data from CrateDB to a local file
5454
system, using the [`COPY TO`] statement.
5555

5656
For more information about how to import and export
57-
data from/into CrateDB, please refer to [](#import-export).
57+
data from/into CrateDB, please refer to {ref}`import-export`.
5858
:::
5959

6060
:::{grid-item}
@@ -120,7 +120,7 @@ strategy for your time series data in CrateDB.
120120
Learn how Bitmovin leverages CrateDB to support real-time analytics on
121121
top of tracking data from their video streaming broadcasting system.
122122

123-
- [](#bitmovin)
123+
- {ref}`bitmovin`
124124
:::
125125

126126
:::{grid-item}
@@ -146,14 +146,14 @@ top of tracking data from their video streaming broadcasting system.
146146
**Industrial Analytics Platform, High-Speed Production Lines, and Logistics**
147147

148148
Learn how ABB, Rauch, SPGo!, and TGW leverage CrateDB to support their
149-
application platforms, high-speed shop-floor production lines, machine
149+
application platforms, high-speed shop floor production lines, machine
150150
monitoring solutions, and logistics databases for warehouses around the
151151
world.
152152

153-
- [](#abb)
154-
- [](#rauch)
155-
- [](#spgo)
156-
- [](#tgw)
153+
- {ref}`abb`
154+
- {ref}`rauch`
155+
- {ref}`spgo`
156+
- {ref}`tgw`
157157
:::
158158

159159
:::{grid-item}

docs/topic/migrate/rockset/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -288,8 +288,8 @@ Learn how to migrate your database use cases and workloads from Rockset to Crate
288288
- [MongoDB CDC Relay]
289289
:::{rubric} General I/O
290290
:::
291-
- [Data loading](#etl) with CrateDB.
292-
- [](#cdc) with CrateDB.
291+
- {ref}`Data loading <etl>` with CrateDB.
292+
- {ref}`cdc` with CrateDB.
293293
::::
294294

295295
::::{grid-item-card}

docs/topic/migrate/rockset/query.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -70,16 +70,16 @@ under a different name, or there may be a simple workaround for your use cases.
7070
| APPROX_DISTINCT(x[, e])| `hyperloglog_distinct` |
7171
| ARRAY_CONCAT(array1, array2, ...)| `array_cat` |
7272
| ARRAY_CONTAINS(array, element)| `element = ANY (array)` |
73-
| ARRAY_CREATE(val1, val2, ...)| `[val1, val2, ...]` or `_array(val1,val2, ...)` |
73+
| ARRAY_CREATE(val1, val2, ...)| `[val1, val2, ...]` or `_array(val1,val2, ...)` |
7474
| ARRAY_DISTINCT(array)| `array_unique` |
7575
| ARRAY_EXCEPT(array1, array2)| `array_unique(array_difference(array1, array2))` |
7676
| ARRAY_FLATTEN(array)| `array_unnest` |
77-
| ARRAY_INTERSECT(array1, array2)| ` array(select DISTINCT a FROM UNNEST(array1) a WHERE a IN (SELECT UNNEST(array2)))` |
77+
| ARRAY_INTERSECT(array1, array2)| ` array(select DISTINCT a FROM UNNEST(array1) a WHERE a IN (SELECT UNNEST(array2)))` |
7878
| ARRAY_JOIN(array, delimiter, nullReplacement)| [`array_to_string`] |
79-
| ARRAY_MAP(function_name, array)| `(select array_agg(function_name(unnest)) from unnest(array))` |
79+
| ARRAY_MAP(function_name, array)| `(select array_agg(function_name(unnest)) from unnest(array))` |
8080
| ARRAY_REMOVE(array, val)| `array_difference(array,[val])` |
81-
| ARRAY_SHUFFLE(array)| `array(select unnest from unnest(array) ORDER BY random())` |
82-
| ARRAY_SORT(array)| `array(select unnest from unnest(array) ORDER BY unnest)` |
81+
| ARRAY_SHUFFLE(array)| `array(select unnest from unnest(array) ORDER BY random())` |
82+
| ARRAY_SORT(array)| `array(select unnest from unnest(array) ORDER BY unnest)` |
8383
| ARRAY_UNION(array1, array2)| `array_unique` |
8484
| ASINH(x)| `LN(x + SQRT((x * x) + 1))` |
8585
| ATANH(x)| `0.5*ln((1+x)/(1-x))` |
@@ -112,7 +112,7 @@ under a different name, or there may be a simple workaround for your use cases.
112112
| MILLISECONDS(n)| `AGE(n::LONG,0)` |
113113
| MINUTES(n)| `'n MINUTES'::INTERVAL` |
114114
| MONTHS(n)| `'n MONTHS'::INTERVAL` |
115-
| PARSE_DATE_ISO8601(string)| `date_trunc('day',string::TIMESTAMP)` |
115+
| PARSE_DATE_ISO8601(string)| `date_trunc('day',string::TIMESTAMP)` |
116116
| PARSE_DATETIME_ISO8601(string)| `string::TIMESTAMP` |
117117
| POSITION(substring IN string)| `strpos(string , substring)` |
118118
| POW(x, y)| `power(x,y)` |
@@ -121,7 +121,7 @@ under a different name, or there may be a simple workaround for your use cases.
121121
| SEQUENCE(start, stop[, step])| `generate_series` |
122122
| SIGN(x)| See [^sign] for CrateDB <5.8 |
123123
| SPLIT(string, delimiter)[index]| `split_part(string, delimiter, index)` |
124-
| ST_ASTEXT(geography)| See [](#ST_ASTEXT) for `POLYGON`s |
124+
| ST_ASTEXT(geography)| See {ref}`ST_ASTEXT` for `POLYGON`s |
125125
| ST_GEOGFROMTEXT(well_known_text)| `well_known_text::geo_shape` |
126126
| ST_GEOGPOINT(longitude, latitude)| `[longitude, latitude]::geo_point` |
127127
| ST_INTERSECTS(geography_a, geography_b)| `intersects(geo_shape, geo_shape)` |

0 commit comments

Comments
 (0)