-
Notifications
You must be signed in to change notification settings - Fork 9
/
align.py
222 lines (172 loc) · 8.35 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
import pyximport
pyximport.install(setup_args={"include_dirs":np.get_include()},build_dir="build", build_in_temp=False)
from align_fill import cython_fill_table
import sys
import torch
sys.path.append("../../../espnet")
from espnet.asr.asr_utils import get_model_conf
import os
from pathlib import Path
from time import time
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("model_path")
parser.add_argument("data_path")
parser.add_argument("eval_path")
parser.add_argument('--start_win', type=int, default=8000)
args = parser.parse_args()
max_prob = -10000000000.0
def align(lpz, char_list, ground_truth, utt_begin_indices, skip_prob):
blank = 0
print("Audio length: " + str(lpz.shape[0]))
print("Text length: " + str(len(ground_truth)))
if len(ground_truth) > lpz.shape[0] and skip_prob <= max_prob:
raise AssertionError("Audio is shorter than text!")
window_len = args.start_win
# Try multiple window lengths if it fails
while True:
# Create table which will contain alignment probabilities
table = np.zeros([min(window_len, lpz.shape[0]), len(ground_truth)], dtype=np.float32)
table.fill(max_prob)
# Use array to log window offsets per character
offsets = np.zeros([len(ground_truth)], dtype=np.int)
# Run actual alignment
t, c = cython_fill_table(table, lpz.astype(np.float32), np.array(ground_truth), offsets, np.array(utt_begin_indices), blank, skip_prob)
print("Max prob: " + str(table[:, c].max()) + " at " + str(t))
# Backtracking
timings = np.zeros([len(ground_truth)])
char_probs = np.zeros([lpz.shape[0]])
char_list = [''] * lpz.shape[0]
current_prob_sum = 0
try:
# Do until start is reached
while t != 0 or c != 0:
# Calculate the possible transition probabilities towards the current cell
min_s = None
min_switch_prob_delta = np.inf
max_lpz_prob = max_prob
for s in range(ground_truth.shape[1]):
if ground_truth[c, s] != -1:
offset = offsets[c] - (offsets[c - 1 - s] if c - s > 0 else 0)
switch_prob = lpz[t + offsets[c], ground_truth[c, s]] if c > 0 else max_prob
est_switch_prob = table[t, c] - table[t - 1 + offset, c - 1 - s]
if abs(switch_prob - est_switch_prob) < min_switch_prob_delta:
min_switch_prob_delta = abs(switch_prob - est_switch_prob)
min_s = s
max_lpz_prob = max(max_lpz_prob, switch_prob)
stay_prob = max(lpz[t + offsets[c], blank], max_lpz_prob) if t > 0 else max_prob
est_stay_prob = table[t, c] - table[t - 1, c]
# Check which transition has been taken
if abs(stay_prob - est_stay_prob) > min_switch_prob_delta:
# Apply reverse switch transition
if c > 0:
# Log timing and character - frame alignment
for s in range(0, min_s + 1):
timings[c - s] = (offsets[c] + t) * 10 * 4 / 1000
char_probs[offsets[c] + t] = max_lpz_prob
char_list[offsets[c] + t] = train_args.char_list[ground_truth[c, min_s]]
current_prob_sum = 0
c -= 1 + min_s
t -= 1 - offset
else:
# Apply reverse stay transition
char_probs[offsets[c] + t] = stay_prob
char_list[offsets[c] + t] = "ε"
t -= 1
except IndexError:
# If the backtracking was not successful this usually means the window was too small
window_len *= 2
print("IndexError: Trying with win len: " + str(window_len))
if window_len < 100000:
continue
else:
raise
break
return timings, char_probs, char_list
def prepare_text(text):
# Prepares the given text for alignment
# Therefore we create a matrix of possible character symbols to represent the given text
# Create list of char indices depending on the models char list
ground_truth = "#"
utt_begin_indices = []
for utt in text:
# Only one space in-between
if ground_truth[-1] != " ":
ground_truth += " "
# Start new utterance remeber index
utt_begin_indices.append(len(ground_truth) - 1)
# Add chars of utterance
for char in utt:
if char.isspace():
if ground_truth[-1] != " ":
ground_truth += " "
elif char in train_args.char_list and char not in [ ".", ",", "-", "?", "!", ":", "»", "«", ";", "'", "›", "‹", "(", ")"]:
ground_truth += char
# Add space to the end
if ground_truth[-1] != " ":
ground_truth += " "
utt_begin_indices.append(len(ground_truth) - 1)
# Create matrix where first index is the time frame and the second index is the number of letters the character symbol spans
max_char_len = max([len(c) for c in train_args.char_list])
ground_truth_mat = np.ones([len(ground_truth), max_char_len], np.int) * -1
for i in range(len(ground_truth)):
for s in range(max_char_len):
if i-s < 0:
continue
span = ground_truth[i-s:i+1]
span = span.replace(" ", '▁')
if span in train_args.char_list:
ground_truth_mat[i, s] = train_args.char_list.index(span)
return ground_truth_mat, utt_begin_indices
def write_output(out_path, utt_begin_indices, char_probs):
# Uses char-wise alignments to get utterance-wise alignmentes and writes them into the given file
with open(str(out_path), 'w') as outfile:
outfile.write(str(path_wav.name) + '\n')
def compute_time(index, type):
# Compute start and end time of utterance.
middle = (timings[index] + timings[index - 1]) / 2
if type == "begin":
return max(timings[index + 1] - 0.5, middle)
elif type == "end":
return min(timings[index - 1] + 0.5, middle)
for i in range(len(text)):
start = compute_time(utt_begin_indices[i], "begin")
end = compute_time(utt_begin_indices[i + 1], "end")
start_t = int(round(start * 1000 / 40))
end_t = int(round(end * 1000 / 40))
# Compute confidence score by using the min mean probability after splitting into segments of 30 frames
n = 30
if end_t == start_t:
min_avg = 0
elif end_t - start_t <= n:
min_avg = char_probs[start_t:end_t].mean()
else:
min_avg = 0
for t in range(start_t, end_t - n):
min_avg = min(min_avg, char_probs[t:t + n].mean())
outfile.write(str(start) + " " + str(end) + " " + str(min_avg) + " | " + text[i] + '\n')
model_path = args.model_path
model_conf = None
# read training config
idim, odim, train_args = get_model_conf(model_path, model_conf)
space_id = train_args.char_list.index('▁')
train_args.char_list[0] = "ε"
train_args.char_list = [c.lower() for c in train_args.char_list]
data_path = Path(args.data_path)
eval_path = Path(args.eval_path)
for path_wav in data_path.glob("*.wav"):
chapter_sents = data_path / path_wav.name.replace(".wav", ".txt")
chapter_prob = eval_path / path_wav.name.replace(".wav", ".npz")
out_path = eval_path / path_wav.name.replace(".wav", ".txt")
with open(str(chapter_sents), "r") as f:
text = [t.strip() for t in f.readlines()]
lpz = np.load(str(chapter_prob))["arr_0"]
print("Syncing " + str(path_wav))
ground_truth_mat, utt_begin_indices = prepare_text(text)
try:
timings, char_probs, char_list = align(lpz, train_args.char_list, ground_truth_mat, utt_begin_indices, max_prob)
except AssertionError:
print("Skipping: Audio is shorter than text")
continue
write_output(out_path, utt_begin_indices, char_probs)