-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
132 lines (103 loc) · 5.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn.functional as F
from torch.nn import Linear, BatchNorm1d, LayerNorm, Dropout, Softmax
class MultiheadAttention(torch.nn.Module):
def __init__(self, input_dim, num_heads, dropout=0.0):
super(MultiheadAttention, self).__init__()
self.input_dim = input_dim
self.num_heads = num_heads
self.head_dim = input_dim // num_heads
# Linear projections for queries, keys, and values
self.query_projection = Linear(input_dim, input_dim)
self.key_projection = Linear(input_dim, input_dim)
self.value_projection = Linear(input_dim, input_dim)
# Linear projection for the output of the attention heads
self.output_projection = Linear(input_dim, input_dim)
self.dropout = Dropout(dropout)
self.softmax = Softmax(dim=-1)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
# Linear projections for queries, keys, and values
query = self.query_projection(query)
key = self.key_projection(key)
value = self.value_projection(value)
# Reshape the projected queries, keys, and values
query = query.view(batch_size * self.num_heads, -1, self.head_dim)
key = key.view(batch_size * self.num_heads, -1, self.head_dim)
value = value.view(batch_size * self.num_heads, -1, self.head_dim)
# Compute the scaled dot-product attention
attention_scores = torch.bmm(query, key.transpose(1, 2))
attention_scores = attention_scores / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
# Apply the mask (if provided)
if mask is not None:
mask = mask.unsqueeze(1) # Add head dimension
attention_scores = attention_scores.masked_fill(mask == 0, float("-inf"))
attention_probs = self.softmax(attention_scores)
attention_probs = self.dropout(attention_probs)
# Compute the output of the attention heads
attention_output = torch.bmm(attention_probs, value)
# Reshape and project the output of the attention heads
attention_output = attention_output.view(batch_size, -1, self.input_dim)
attention_output = self.output_projection(attention_output)
return attention_output, attention_probs
class HOGA(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout, num_hops, heads, attn_dropout=0.0):
super(HOGA, self).__init__()
self.num_layers = num_layers
self.num_hops = num_hops
use_bias = False
self.lins = torch.nn.ModuleList()
self.gates = torch.nn.ModuleList()
self.trans = torch.nn.ModuleList()
self.lns = torch.nn.ModuleList()
self.lins.append(Linear(in_channels, hidden_channels, bias=use_bias))
self.lins.append(Linear(hidden_channels, hidden_channels, bias=use_bias))
self.lins.append(Linear(hidden_channels, hidden_channels, bias=use_bias))
self.gates.append(Linear(hidden_channels, hidden_channels, bias=use_bias))
self.trans.append(MultiheadAttention(hidden_channels, heads, dropout=attn_dropout))
self.lns.append(LayerNorm(hidden_channels))
for _ in range(num_layers - 1):
self.lins.append(Linear(hidden_channels, hidden_channels, bias=use_bias))
self.gates.append(Linear(hidden_channels, hidden_channels, bias=use_bias))
self.trans.append(MultiheadAttention(hidden_channels, heads, dropout=attn_dropout))
self.lns.append(LayerNorm(hidden_channels))
# two linear layer for predictions
self.linear = torch.nn.ModuleList()
self.linear.append(Linear(hidden_channels, hidden_channels, bias=False))
self.linear.append(Linear(hidden_channels, out_channels, bias=False))
self.linear.append(Linear(hidden_channels, out_channels, bias=False))
self.linear.append(Linear(hidden_channels, out_channels, bias=False))
self.bn0 = BatchNorm1d(hidden_channels)
self.attn_layer = Linear(2 * hidden_channels, 1)
self.dropout = dropout
def reset_parameters(self):
for lin in self.lins:
lin.reset_parameters()
for gate in self.gates:
gate.reset_parameters()
for li in self.linear:
li.reset_parameters()
self.bn0.reset_parameters()
def forward(self, x):
x = self.lins[0](x)
for i, tran in enumerate(self.trans):
x = self.lns[i](self.gates[i](x)*(tran(x, x, x)[0]))
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
target = x[:,0,:].unsqueeze(1).repeat(1,self.num_hops-1,1)
split_tensor = torch.split(x, [1, self.num_hops-1], dim=1)
node_tensor = split_tensor[0]
neighbor_tensor = split_tensor[1]
layer_atten = self.attn_layer(torch.cat((target, neighbor_tensor), dim=2))
layer_atten = F.softmax(layer_atten, dim=1)
neighbor_tensor = neighbor_tensor * layer_atten
neighbor_tensor = torch.sum(neighbor_tensor, dim=1, keepdim=True)
x = (node_tensor + neighbor_tensor).squeeze()
x = self.linear[0](x)
x = self.bn0(F.relu(x))
x = F.dropout(x, p=self.dropout, training=self.training)
x1 = self.linear[1](x) # for xor
x2 = self.linear[2](x) # for maj
x3 = self.linear[3](x) # for roots
return x1, x2, x3, layer_atten