-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
432 lines (394 loc) · 19 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps">
<meta name="keywords" content="3D detection, Collaborative perception, Communication-Efficient">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- <title>AirDet</title> -->
<!-- Global site tag (gtag.js) - Google Analytics -->
<!-- <script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<link rel="icon" type="image/png" href="./static/images/cmic.jpeg">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/cmic.jpeg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<!-- <div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://jaraxxus-me.github.io/">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://ieeexplore.ieee.org/document/9561564">
ADTrack - ICRA 2021
</a>
<a class="navbar-item" href="https://openaccess.thecvf.com/content/ICCV2021/papers/Cao_HiFT_Hierarchical_Feature_Transformer_for_Aerial_Tracking_ICCV_2021_paper.pdf">
HiFT - ICCV 2021
</a>
</div>
</div>
</div> -->
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<!-- <h1 class="title is-1 publication-title"><img src="./static/images/drone.svg" width="120">AirDet </h1> -->
<h1 class="title is-2 publication-title">Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps</h1>
<div class="column is-full_width">
<h2 class="title is-4">Accepted by NeurIPS 2022 Spotlight</h2>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://scholar.google.com/citations?user=XBbwb78AAAAJ&hl=zh-CN">Yue Hu</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://github.com/dongfeng12">Shaoheng Fang</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://chezacar.github.io/">Zixing Lei</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://github.com/Kay1794">Yiqi Zhong</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://siheng-chen.github.io/">Siheng Chen</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>Cooperative Medianet Innovation Center, Shanghai Jiao Tong University</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>2</sup>Department of Engineering Science, University of Southern California</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/abs/2209.12836"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2209.12836"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/MediaBrain-SJTU/Where2comm"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Video Link. -->
<span class="link-block">
<a href="https://www.youtube.com/watch?v=xl1zgGy1GA0"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Youtube</span>
</a>
</span>
<!-- Video Link. -->
<span class="link-block">
<a href="https://www.bilibili.com/video/BV1Je4y1g7sP/?spm_id_from=333.999.0.0&vd_source=5ecff8efbea6e8fdc7e8e1f75575f7a5"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Bilibili</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- <span class="link-block">
<a href="https://github.com/Jaraxxus-Me/AirDet"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a>
</span> -->
<!-- <span class="link-block">
<a href="https://github.com/Jaraxxus-Me/AirDet_ROS"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-robot"></i>
</span>
<span>ROS</span>
</a>
</span> -->
<!-- <span class="link-block">
<a href="https://zhuanlan.zhihu.com/p/545249730"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-blog"></i>
</span>
<span>Blog</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Paper video. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe width="951" height="535" src="https://www.youtube.com/embed/xl1zgGy1GA0" title="[NeurIPS 2022] Where2comm: Communication-Efficient Collaborative Perception" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
</div>
</div>
<!--/ Paper video. -->
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img src="static\images\Intro.png" class="center"/>
<!-- <video id="teaser" autoplay muted loop height="100%">
<source src="./static/images/SUBT_video.mp4"
type="video/mp4">
</video> -->
<!-- <img class="rounded" src="./media/nice-slam/teaser.png" > -->
<br><br><br>
<!-- <h2 class="subtitle has-text-centered">
</h2> -->
<!-- <h2 class="subtitle has-text-centered">
(The <span style="color:#000000;">black</span> / <span style="color:#ff0000;">red</span> lines are the ground truth / predicted camera trajectory)
</h2> -->
<h2 class="is-size-6 has-text-centered">Collaborative perception could contribute to safety-critical scenarios, where the white car and the red car may collide due to occlusion. This collision could be avoided when the blue car can share a message about the red car's position. Such a message is spatially sparse, yet perceptually critical. Considering the precious communication bandwidth, each agent needs to speak to the point!</h2>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Paper video. -->
<!-- <div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/V5hYTz5os0M?rel=0&showinfo=0"
frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div> -->
<!--/ Paper video. -->
<!-- <br> -->
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Multi-agent collaborative perception could significantly upgrade the perception performance by enabling agents to share complementary information with each other through communication. It inevitably results in a fundamental trade-off between perception performance and communication bandwidth. To tackle this bottleneck issue, we propose a spatial confidence map, which reflects the spatial heterogeneity of perceptual information. It empowers agents to only share spatially sparse, yet perceptually critical information, contributing to where to communicate.</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- <br> -->
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Contribution</h2>
<div class="content has-text-justified">
<li>
We propose a novel fine-grained spatial-aware communication strategy, where each agent can decide where to communicate and pack messages only related to the most perceptually critical spatial areas. This strategy not only enables more precise support for other agents, but also more targeted request from other agents in multi-round communication.</li>
<li>
We propose Where2comm, a novel collaborative perception framework based on the spatial-aware communication strategy. With the guidance of the proposed spatial confidence map, Where2comm leverages novel message packing and communication graph learning to achieve lower communication bandwidth, and adopts confidence-aware multi-head attention to reach better perception performance.</li>
<li>
We conduct extensive experiments to validate Where2comm achieves state-of-the-art performance-bandwidth trade-off on multiple challenging real/simulated datasets across views and modalities. </li>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Method. -->
<div class="columns is-centered has-text-centered">
<div class="column is-full_width">
<hr>
<h2 class="title is-3">Method</h2>
<br>
<img src="static\images\system-final.png" class="center"/>
<div class="content has-text-justified">
<br>
<p>
Framework of Where2comm, a multi-round, multi-modality, multi-agent collaborative perception framework based on a spatial-confidence-aware communication strategy. Where2comm includes an observation encoder, a spatial confidence generator, the spatial confidence-aware communication module, the spatial confidence-aware message fusion module and a detection decoder. Among five modules, the proposed <strong>spatial confidence generator</strong> generates the spatial confidence map. Based on this spatial confidence map, the proposed <strong>spatial confidence-aware communication</strong> generates compact messages and sparse communication graphs to save communication bandwidth; and the proposed <strong>spatial confidence-aware message fusion</strong> module leverages informative spatial confidence priors to achieve better aggregation.</div>
</div>
</div>
<hr>
<!-- Applications.-->
<div class="columns is-centered has-text-centered">
<div class="column is-full_width">
<h2 class="title is-3">Qualitative Results</h2>
</div>
</div>
<!-- <div class="column is-full_width">
<img src=static\images\dair_3d_18.gif>
</div>
<div class="content has-text-justified">
<br>
<p>
Where2comm qualitatively outperforms single agent detection.
</p>
</p>
</div>
</div> -->
<div class="columns is-centered has-text-centered">
</div>
<div class="column is-full_width">
<img src=static\images\QualtativeResults.png >
</div>
<div class="content has-text-justified">
<br>
<p>
Where2comm qualitatively outperforms When2com and DiscoNet in DAIR-V2X dataset. <span style="color:#00CC66;">Green</span> and <span style="color:#ff0000;">Red</span> boxes denote ground-truth and detection, respectively. <span style="color:#ffd700;">Yellow</span> and <span style="color:#00ced1;">blue</span> denote the point clouds collected from vehicle and infrastructure, respectively.
</p>
</p>
</div>
</div>
<br><br>
<hr>
<!-- <h3 class="title is-4">Attention of Detection Head</h3> -->
<!-- <div class="column is-full_width">
<table><tr>
<td><img src=static\images\single_bev_00019.png style="margin-right: 30px;"><figcaption><center>No Collaboration</center></figcaption></td>
<td><img src=static\images\when2com_bev_00019.png style="margin-right: 30px;"><figcaption><center>When2com</center></figcaption></td>
<td><img src=static\images\disconet_bev_00019.png style="margin-right: 30px;"><figcaption><center>DiscoNet</center></figcaption></td>
<td><img src=static\images\where2comm_bev_00019.png style="margin-right: 30px;"><figcaption><center>Where2comm</center></figcaption></td>
</tr></table>
</div> -->
<!-- <div class="row">
<div class="col-md-4">
<img src="static\images\single_bev_00019.png" alt="agent_0" style="width:30%">
<figcaption>No Collaboration</figcaption>
</div>
<div class="col-md-4">
<img src="static\images\when2com_bev_00019.png" alt="agent_1" style="width:30%">
<figcaption><center>When2com</center></figcaption>
</div>
<div class="col-md-4">
<img src="static\images\disconet_bev_00019.png" alt="agent_2" style="width:30%">
<figcaption>DiscoNet</figcaption>
</div>
<div class="col-md-4">
<img src="static\images\where2comm_bev_00019.png" alt="agent_2" style="width:30%">
<figcaption>DiscoNet</figcaption>
</div>
</div> -->
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{Hu22Where2comm,
author = {Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, Siheng Chen},
title = {Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps},
booktitle={Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS)}
month = {November},
year = {2022}
}</code></pre>
</div>
</section>
<!-- <section class="section" id="Acknowledgements">
<div class="container is-max-desktop content">
<h2 class="title">Acknowledgements</h2>
The work was done when Bowen Li and Pranay Reddy were interns at The Robotics Institute, CMU. The authors would like to thank all members of the Team Explorer for providing data collected from the DARPA Subterranean Challenge. Our code is built upon <a href="https://github.com/fanq15/FewX">FewX</a>, for which we sincerely express our gratitute to the authors.
</div>
</section> -->
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
This webpage template is from <a href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>.
We sincerely thank <a href="https://keunhong.com/">Keunhong Park</a> for developing and open-sourcing this template.
</p>
</div>
</div>
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>