-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtpp_analyze_pt1.py
137 lines (120 loc) · 5.95 KB
/
tpp_analyze_pt1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import time
import pyvf.strategy.Model
import pandas as pd
import numpy as np
from datetime import datetime
from pytz import timezone
from collections import namedtuple
from pathlib import Path
from argparse import ArgumentParser
from pandas.api.types import CategoricalDtype
import scipy.stats
import bs4
parser = ArgumentParser()
parser.add_argument("-i", "--input-folders", required=True, nargs="+", type=str, help="Folder containing all subject folders each containing test folders")
parser.add_argument("-o", "--output", required=True, type=str, help="CSV output")
args = parser.parse_args()
field_names = ["id", "comment", "timestamp", "dob", "routine", "duration", "eye", "pattern", "strategy",
"fl_error", "fl_total", "fp_error", "fp_total", "fn_error", "fn_total",
"md", "psd", "vfi", "ght", "path"]
field_names.extend([f"L{i}" for i in range(68)])
field_names.extend([f"TDp{i}" for i in range(54)])
field_names.extend([f"PDp{i}" for i in range(54)])
defaults = ["", "", np.nan, np.nan, np.nan, "", "", "", np.nan, np.nan, np.nan, "", ""] # This needs to be updated...
defaults.extend([np.nan for _ in range(68)])
defaults.extend([np.nan for _ in range(54)])
defaults.extend([np.nan for _ in range(54)])
SummaryEntry = namedtuple("SummaryEntry", field_names=field_names, defaults=defaults)
df_entries = []
for d in args.input_folders:
print(".", end="")
p = Path(d)
meta_file = p / "meta.json"
if meta_file.exists():
with open(meta_file) as f:
meta = json.load(f)
else:
meta = {}
for test_data_file in p.glob("*/data.json"):
comments = []
for k, v in meta.get("categories", {}).items():
if test_data_file.parent.name in v:
comments.append(k)
with open(test_data_file) as f:
data = json.load(f)
if (test_data_file.parent / "index.html").exists():
with open(test_data_file.parent / "index.html") as f:
soup = bs4.BeautifulSoup(f.read(), "html.parser")
vfi_str = soup.find(id="vfi_val").string
vfi = float(vfi_str.strip("%") if vfi_str.upper() != "N/A" else "nan")
ght = soup.find(id="ght_val").string
ght = ght if ght.upper() != "N/A" else ""
else:
vfi = np.nan
ght = ""
test_start = next(i for i in data["data"] if i.get("message", None) == "Test start")
test_stop = next(i for i in reversed(data["data"]) if i.get("message", None) == "Test stop")
dob = meta.get("user", {}).get("dob", None)
if dob is None:
dob = data["user"]["dob"]
dob = datetime.strptime(str(dob), "%Y%m%d").date()
eye = data["user"]["side"].split()[0].upper()
if eye == "RIGHT":
eye = "OD"
elif eye == "LEFT":
eye = "OS"
test_datetime = datetime.fromtimestamp(float(test_start["timestamp"]) / 1000.0)
routine = data["user"]["routine"]
if routine.upper().startswith("TPP242"):
model = pyvf.strategy.Model.HFASitaStandardp24d2Model( # pyvf.strategy.Model.Heijl1987p24d2Model(
age=(test_datetime-datetime(dob.year, dob.month, dob.day)).days/365.25,
eval_pattern=pyvf.strategy.PATTERN_P24D2
)
elif routine.upper().startswith("TPP102"):
# model = pyvf.strategy.Model.TPP2020p24d2Model( # pyvf.strategy.Model.Heijl1987p24d2Model(
# age=(test_datetime - datetime(dob.year, dob.month, dob.day)).days / 365.25,
# eval_pattern=pyvf.strategy.PATTERN_P10D2
# )
model = None
else:
raise NotImplementedError(f"routine = {routine} is not yet implemented")
thresholds = tuple(float(loc[3]) for loc in data["locations"])
kwargs = {f"L{i}": v for i, v in enumerate(thresholds)}
if model is not None:
kwargs.update({f"TDp{i}": v for i, v in enumerate(scipy.stats.norm.cdf(model.get_td(thresholds) * 1.0 / model.get_std()))})
kwargs.update({f"PDp{i}": v for i, v in enumerate(scipy.stats.norm.cdf(model.get_pd(thresholds) * 1.0 / model.get_std()))})
se = SummaryEntry(id=p.name,
comment="/".join(comments),
timestamp=test_datetime,
dob=dob,
routine=routine,
duration=(float(test_stop["timestamp"])-float(test_start["timestamp"])) / 1000.0,
eye=eye,
path=str(test_data_file),
md=model.get_md(thresholds) if model is not None else np.nan,
psd=model.get_psd(thresholds) if model is not None else np.nan,
vfi=vfi,
ght=ght,
pattern=routine,
strategy=routine,
fl_error=int(data["reliability"]["fixationLossCatch"]),
fl_total=int(data["reliability"]["fixationLossTotal"]),
fp_error=int(data["reliability"]["falsePositiveCatch"]),
fp_total=int(data["reliability"]["falsePositiveTotal"]),
fn_error=int(data["reliability"]["falseNegativeCatch"]),
fn_total=int(data["reliability"]["falseNegativeTotal"]),
**kwargs)
df_entries.append(se)
df = pd.DataFrame(df_entries)
for col in ('id', 'comment', 'eye', 'pattern', 'strategy', 'ght'):
df[col] = df[col].astype('category')
df["dob"] = pd.to_datetime(df["dob"])
df = df.sort_values(["id", "eye", "timestamp"])
try:
df.to_csv(args.output, index=False, float_format="%.6g")
except PermissionError as e:
print(e)
input(f"Please close the following file and then press enter to continue: {args.output}")
df.to_csv(args.output, index=False, float_format="%.6g")
# df.to_hdf(args.output+".h5", key='df', mode='w', format="table")