-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmatcaffe2caffe.py
91 lines (73 loc) · 2.87 KB
/
matcaffe2caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8 -*-
"""
This is a tool for converting a matlab caffe(column major) model to a pycaffe(row major) model
"""
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import math, copy
import sys,os
import caffe
import caffe.proto.caffe_pb2 as caffe_pb2
import time
from google.protobuf import text_format
def parse_args():
parser = argparse.ArgumentParser(
description='convert a matcaffe model to a pycaffe model(column major to row major')
parser.add_argument('--proto', dest='proto',
help="path to deploy prototxt.", type=str)
parser.add_argument('--model', dest='model',
help='path to pretrained weights', type=str)
parser.add_argument('--output', dest='output',
help='path to output model', type=str, default='pycaffe.caffemodel')
args = parser.parse_args()
return args, parser
global args, parser
args, parser = parse_args()
def usage_info():
"""
usage info
"""
print("Input params is illegal...")
print("try it again:\n python matcaffe2pycaffe.py -h")
def main():
"""
main function
"""
print(args)
if args.proto == None or args.model == None:
usage_info()
return None
# deploy caffe prototxt path
net_file = args.proto
# trained caffemodel path
caffe_model = args.model
# the output caffemodel file
output_path = args.output
caffe.set_mode_cpu()
net = caffe.Net(net_file,caffe_model,caffe.TEST)
last_shape = None
for param_name in net.params.keys():
idx = list(net._layer_names).index(param_name)
if net.layers[idx].type in ['Convolution', 'InnerProduct']:
# for typical conv filter, we need to transpose its weight
if len(net.params[param_name][0].data.shape) == 4:
trans = net.params[param_name][0].data.transpose((0, 1, 3, 2))
# for innerproduct filter
elif len(net.params[param_name][0].data.shape) == 2:
ori_shape = net.params[param_name][0].data.shape
# if the previous layer is typical conv filter, then we still need to transpose its weight
if last_shape and last_shape == 4:
trans = net.params[param_name][0].data.reshape(ori_shape[0], -1, 3, 3).\
transpose((0, 1, 3, 2)).reshape(*ori_shape)
# if the previous layer is not typical conv filter, we do nothing
else:
trans = net.params[param_name][0].data
# net.params[param_name][0].reshape(*trans.shape)
net.params[param_name][0].data[...] = trans
last_shape = len(net.params[param_name][0].data.shape)
net.save(output_path)
print("\nConversion complete!")
if __name__ == "__main__":
main()