diff --git a/comfy_extras/nodes_lt.py b/comfy_extras/nodes_lt.py index b51d1580453a..50da5f4eb606 100644 --- a/comfy_extras/nodes_lt.py +++ b/comfy_extras/nodes_lt.py @@ -34,6 +34,7 @@ def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput: latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) return io.NodeOutput({"samples": latent}) + generate = execute # TODO: remove class LTXVImgToVideo(io.ComfyNode): @classmethod @@ -77,6 +78,8 @@ def execute(cls, positive, negative, image, vae, width, height, length, batch_si return io.NodeOutput(positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}) + generate = execute # TODO: remove + def conditioning_get_any_value(conditioning, key, default=None): for t in conditioning: @@ -264,6 +267,8 @@ def execute(cls, positive, negative, vae, latent, image, frame_idx, strength) -> return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) + generate = execute # TODO: remove + class LTXVCropGuides(io.ComfyNode): @classmethod @@ -300,6 +305,8 @@ def execute(cls, positive, negative, latent) -> io.NodeOutput: return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask}) + crop = execute # TODO: remove + class LTXVConditioning(io.ComfyNode): @classmethod @@ -498,6 +505,7 @@ def execute(cls, image, img_compression) -> io.NodeOutput: output_images.append(preprocess(image[i], img_compression)) return io.NodeOutput(torch.stack(output_images)) + preprocess = execute # TODO: remove class LtxvExtension(ComfyExtension): @override