-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_loglm.py
47 lines (37 loc) · 1.62 KB
/
train_loglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import keras
import loglm
TIMESERIES_CONTEXT = 8
BATCH_SIZE = 32
SHUFFLE_BUFFER_SIZE = 1_000
NUM_HEADS = 4
HEAD_SIZE = 16
NUM_LAYERS = 4
DROPOUT = 0.2
LEARNING_RATE = 3e-4
def main(args: argparse.Namespace=None):
if args is None:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('input_file_pattern', help='Input files')
parser.add_argument('model_file')
args = parser.parse_args()
encoder = keras.layers.StringLookup()
file_ds = loglm.read_text_file(args.input_file_pattern, encoder, adapt_encoder=True)
train_ds = loglm.create_value_target_dataset(file_ds,
TIMESERIES_CONTEXT,
BATCH_SIZE,
shuffle=True,
shuffle_buffer_size=SHUFFLE_BUFFER_SIZE)
model = loglm.XformerAD(loglm.XFormerADConfig(context_size=TIMESERIES_CONTEXT,
num_heads=NUM_HEADS,
head_size=HEAD_SIZE,
num_layers=NUM_LAYERS,
dropout=DROPOUT,
vocabulary_size=encoder.vocabulary_size()))
optimizer = keras.optimizers.AdamW(LEARNING_RATE)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer, loss)
model.summary()
model.fit(train_ds.take(10_000))
if __name__ == '__main__':
main()