-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathutils.py
456 lines (361 loc) · 14.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""rio_tiler.utils: utility functions."""
import math
from io import BytesIO
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import numpy
from affine import Affine
from boto3.session import Session as boto3_session
from rasterio import windows
from rasterio.crs import CRS
from rasterio.enums import ColorInterp, MaskFlags
from rasterio.features import is_valid_geom
from rasterio.io import DatasetReader, DatasetWriter, MemoryFile
from rasterio.rio.helpers import coords
from rasterio.transform import from_bounds, rowcol
from rasterio.vrt import WarpedVRT
from rasterio.warp import calculate_default_transform, transform_geom
from .colormap import apply_cmap
from .constants import WEB_MERCATOR_CRS, NumType
from .errors import RioTilerError
def _chunks(my_list: Sequence, chuck_size: int):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(my_list), chuck_size):
yield my_list[i : i + chuck_size]
def aws_get_object(
bucket: str,
key: str,
request_pays: bool = False,
client: boto3_session.client = None,
) -> bytes:
"""AWS s3 get object content."""
if not client:
session = boto3_session()
client = session.client("s3")
params = {"Bucket": bucket, "Key": key}
if request_pays:
params["RequestPayer"] = "requester"
response = client.get_object(**params)
return response["Body"].read()
def _stats(
arr: numpy.ma.array, percentiles: Tuple[float, float] = (2, 98), **kwargs: Any
) -> Dict:
"""Calculate array statistics.
Args:
arr (numpy.ndarray): Input array data to get the stats from.
percentiles (tuple, optional): Min/Max percentiles to compute. Defaults to `(2, 98)`.
kwargs (optional): Options to forward to numpy.histogram function.
Returns:
dict: numpy array statistics (percentiles, min, max, stdev, histogram).
Examples:
>>> {
'pc': [38, 147],
'min': 20,
'max': 180,
'std': 28.123562304138662,
'histogram': [
[1625, 219241, 28344, 15808, 12325, 10687, 8535, 7348, 4656, 1208],
[20.0, 36.0, 52.0, 68.0, 84.0, 100.0, 116.0, 132.0, 148.0, 164.0, 180.0]
]
}
"""
sample, edges = numpy.histogram(arr[~arr.mask], **kwargs)
return dict(
percentiles=numpy.percentile(arr[~arr.mask], percentiles)
.astype(arr.dtype)
.tolist(),
min=arr.min().item(),
max=arr.max().item(),
std=arr.std().item(),
histogram=[sample.tolist(), edges.tolist()],
)
# https://github.com/OSGeo/gdal/blob/b1c9c12ad373e40b955162b45d704070d4ebf7b0/gdal/frmts/ingr/IngrTypes.cpp#L191
def _div_round_up(a: int, b: int) -> int:
return (a // b) if (a % b) == 0 else (a // b) + 1
def get_overview_level(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: int,
width: int,
dst_crs: CRS = WEB_MERCATOR_CRS,
) -> int:
"""Return the overview level corresponding to the tile resolution.
Freely adapted from https://github.com/OSGeo/gdal/blob/41993f127e6e1669fbd9e944744b7c9b2bd6c400/gdal/apps/gdalwarp_lib.cpp#L2293-L2362
Args:
src_dst (rasterio.io.DatasetReader or rasterio.io.DatasetWriter or rasterio.vrt.WarpedVRT): Rasterio dataset.
bounds (tuple): Bounding box coordinates in target crs (**dst_crs**).
height (int): Desired output height of the array for the input bounds.
width (int): Desired output width of the array for the input bounds.
dst_crs (rasterio.crs.CRS, optional): Target Coordinate Reference System. Defaults to `epsg:3857`.
Returns:
int: Overview level.
"""
dst_transform, _, _ = calculate_default_transform(
src_dst.crs, dst_crs, src_dst.width, src_dst.height, *src_dst.bounds
)
src_res = dst_transform.a
# Compute what the "natural" output resolution
# (in pixels) would be for this input dataset
vrt_transform = from_bounds(*bounds, width, height)
target_res = vrt_transform.a
ovr_idx = -1
if target_res > src_res:
res = [src_res * decim for decim in src_dst.overviews(1)]
for ovr_idx in range(ovr_idx, len(res) - 1):
ovrRes = src_res if ovr_idx < 0 else res[ovr_idx]
nextRes = res[ovr_idx + 1]
if (ovrRes < target_res) and (nextRes > target_res):
break
if abs(ovrRes - target_res) < 1e-1:
break
else:
ovr_idx = len(res) - 1
return ovr_idx
def get_vrt_transform(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: Optional[int] = None,
width: Optional[int] = None,
dst_crs: CRS = WEB_MERCATOR_CRS,
) -> Tuple[Affine, int, int]:
"""Calculate VRT transform.
Args:
src_dst (rasterio.io.DatasetReader or rasterio.io.DatasetWriter or rasterio.vrt.WarpedVRT): Rasterio dataset.
bounds (tuple): Bounding box coordinates in target crs (**dst_crs**).
height (int, optional): Desired output height of the array for the input bounds.
width (int, optional): Desired output width of the array for the input bounds.
dst_crs (rasterio.crs.CRS, optional): Target Coordinate Reference System. Defaults to `epsg:3857`.
Returns:
tuple: VRT transform (affine.Affine), width (int) and height (int)
"""
dst_transform, _, _ = calculate_default_transform(
src_dst.crs, dst_crs, src_dst.width, src_dst.height, *src_dst.bounds
)
w, s, e, n = bounds
if not height or not width:
vrt_width = math.ceil((e - w) / dst_transform.a)
vrt_height = math.ceil((s - n) / dst_transform.e)
vrt_transform = from_bounds(w, s, e, n, vrt_width, vrt_height)
return vrt_transform, vrt_width, vrt_height
tile_transform = from_bounds(w, s, e, n, width, height)
w_res = (
tile_transform.a
if abs(tile_transform.a) < abs(dst_transform.a)
else dst_transform.a
)
h_res = (
tile_transform.e
if abs(tile_transform.e) < abs(dst_transform.e)
else dst_transform.e
)
vrt_width = math.ceil((e - w) / w_res)
vrt_height = math.ceil((s - n) / h_res)
vrt_transform = from_bounds(w, s, e, n, vrt_width, vrt_height)
return vrt_transform, vrt_width, vrt_height
def has_alpha_band(src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT]) -> bool:
"""Check for alpha band or mask in source."""
if (
any([MaskFlags.alpha in flags for flags in src_dst.mask_flag_enums])
or ColorInterp.alpha in src_dst.colorinterp
):
return True
return False
def has_mask_band(src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT]) -> bool:
"""Check for mask band in source."""
if any(
[
(MaskFlags.per_dataset in flags and MaskFlags.alpha not in flags)
for flags in src_dst.mask_flag_enums
]
):
return True
return False
def non_alpha_indexes(src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT]) -> Tuple:
"""Return indexes of non-alpha bands."""
return tuple(
b
for ix, b in enumerate(src_dst.indexes)
if (
src_dst.mask_flag_enums[ix] is not MaskFlags.alpha
and src_dst.colorinterp[ix] is not ColorInterp.alpha
)
)
def linear_rescale(
image: numpy.ndarray,
in_range: Tuple[NumType, NumType],
out_range: Tuple[NumType, NumType] = (0, 255),
) -> numpy.ndarray:
"""Apply linear rescaling to a numpy array.
Args:
image (numpy.ndarray): array to rescale.
in_range (tuple): array min/max value to rescale from.
out_range (tuple, optional): output min/max bounds to rescale to. Defaults to `(0, 255)`.
Returns:
numpy.ndarray: linear rescaled array.
"""
imin, imax = in_range
omin, omax = out_range
image = numpy.clip(image, imin, imax) - imin
image = image / numpy.float(imax - imin)
return image * (omax - omin) + omin
def _requested_tile_aligned_with_internal_tile(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
bounds: Tuple[float, float, float, float],
height: int,
width: int,
) -> bool:
"""Check if tile is aligned with internal tiles."""
if not src_dst.is_tiled:
return False
if src_dst.crs != WEB_MERCATOR_CRS:
return False
col_off, row_off, w, h = windows.from_bounds(
*bounds, height=height, transform=src_dst.transform, width=width
).flatten()
if round(w) % 64 and round(h) % 64:
return False
if (src_dst.width - round(col_off)) % 64:
return False
if (src_dst.height - round(row_off)) % 64:
return False
return True
def render(
data: numpy.ndarray,
mask: Optional[numpy.ndarray] = None,
img_format: str = "PNG",
colormap: Optional[Dict] = None,
**creation_options: Any,
) -> bytes:
"""Translate numpy.ndarray to image bytes.
Args:
data (numpy.ndarray): Image array to encode.
mask (numpy.ndarray, optional): Mask array.
img_format (str, optional): Image format. See: for the list of supported format by GDAL: https://www.gdal.org/formats_list.html. Defaults to `PNG`.
colormap (dict, optional): GDAL RGBA Color Table dictionary.
creation_options (optional): Image driver creation options to forward to GDAL.
Returns
bytes: image body.
Examples:
>>> with COGReader("my_tif.tif") as cog:
img = cog.preview()
with open('test.jpg', 'wb') as f:
f.write(render(img.data, img.mask, img_format="jpeg"))
"""
img_format = img_format.upper()
if len(data.shape) < 3:
data = numpy.expand_dims(data, axis=0)
if colormap:
data, alpha = apply_cmap(data, colormap)
if mask is not None:
mask = (
mask * alpha * 255
) # This is a special case when we want to mask some valid data
# WEBP doesn't support 1band dataset so we must hack to create a RGB dataset
if img_format == "WEBP" and data.shape[0] == 1:
data = numpy.repeat(data, 3, axis=0)
elif img_format == "JPEG":
mask = None
elif img_format == "NPY":
# If mask is not None we add it as the last band
if mask is not None:
mask = numpy.expand_dims(mask, axis=0)
data = numpy.concatenate((data, mask))
bio = BytesIO()
numpy.save(bio, data)
bio.seek(0)
return bio.getvalue()
elif img_format == "NPZ":
bio = BytesIO()
if mask is not None:
numpy.savez_compressed(bio, data=data, mask=mask)
else:
numpy.savez_compressed(bio, data=data)
bio.seek(0)
return bio.getvalue()
count, height, width = data.shape
output_profile = dict(
driver=img_format,
dtype=data.dtype,
count=count + 1 if mask is not None else count,
height=height,
width=width,
)
output_profile.update(creation_options)
with MemoryFile() as memfile:
with memfile.open(**output_profile) as dst:
dst.write(data, indexes=list(range(1, count + 1)))
# Use Mask as an alpha band
if mask is not None:
dst.write(mask.astype(data.dtype), indexes=count + 1)
return memfile.read()
def mapzen_elevation_rgb(data: numpy.ndarray) -> numpy.ndarray:
"""Encode elevation value to RGB values compatible with Mapzen tangram.
Args:
data (numpy.ndarray): Image array to encode.
Returns
numpy.ndarray: Elevation encoded in a RGB array.
"""
data = numpy.clip(data + 32768.0, 0.0, 65535.0)
r = data / 256
g = data % 256
b = (data * 256) % 256
return numpy.stack([r, g, b]).astype(numpy.uint8)
def pansharpening_brovey(
rgb: numpy.ndarray, pan: numpy.ndarray, weight: float, pan_dtype: str
) -> numpy.ndarray:
"""Apply Brovey pansharpening method.
Brovey Method: Each resampled, multispectral pixel is
multiplied by the ratio of the corresponding
panchromatic pixel intensity to the sum of all the
multispectral intensities.
Original code from https://github.com/mapbox/rio-pansharpen
"""
def _calculateRatio(
rgb: numpy.ndarray, pan: numpy.ndarray, weight: float
) -> numpy.ndarray:
return pan / ((rgb[0] + rgb[1] + rgb[2] * weight) / (2 + weight))
with numpy.errstate(invalid="ignore", divide="ignore"):
ratio = _calculateRatio(rgb, pan, weight)
return numpy.clip(ratio * rgb, 0, numpy.iinfo(pan_dtype).max).astype(pan_dtype)
def create_cutline(
src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT],
geometry: Dict,
geometry_crs: CRS = None,
) -> str:
"""
Create WKT Polygon Cutline for GDALWarpOptions.
Ref: https://gdal.org/api/gdalwarp_cpp.html?highlight=vrt#_CPPv415GDALWarpOptions
Args:
src_dst (rasterio.io.DatasetReader or rasterio.io.DatasetWriter or rasterio.vrt.WarpedVRT): Rasterio dataset.
geometry (dict): GeoJSON feature or GeoJSON geometry. By default the cordinates are considered to be in the dataset CRS. Use `geometry_crs` to set a specific CRS.
geometry_crs (rasterio.crs.CRS, optional): Input geometry Coordinate Reference System
Returns:
str: WKT geometry in form of `POLYGON ((x y, x y, ...)))
"""
if "geometry" in geometry:
geometry = geometry["geometry"]
if not is_valid_geom(geometry):
raise RioTilerError("Invalid geometry")
geom_type = geometry["type"]
if geom_type not in ["Polygon", "MultiPolygon"]:
raise RioTilerError(
"Invalid geometry type: {geom_type}. Should be Polygon or MultiPolygon"
)
if geometry_crs:
geometry = transform_geom(geometry_crs, src_dst.crs, geometry)
polys = []
geom = (
[geometry["coordinates"]] if geom_type == "Polygon" else geometry["coordinates"]
)
for p in geom:
xs, ys = zip(*coords(p))
src_y, src_x = rowcol(src_dst.transform, xs, ys)
src_x = [max(0, min(src_dst.width, x)) for x in src_x]
src_y = [max(0, min(src_dst.height, y)) for y in src_y]
poly = ", ".join([f"{x} {y}" for x, y in list(zip(src_x, src_y))])
polys.append(f"(({poly}))")
str_poly = ",".join(polys)
return (
f"POLYGON {str_poly}"
if geom_type == "Polygon"
else f"MULTIPOLYGON ({str_poly})"
)