This repository has been archived by the owner on Apr 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathharris.cpp
314 lines (261 loc) · 10.3 KB
/
harris.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// This file is part of VisionCPP, a lightweight C++ template library
// for computer vision and image processing.
//
// Copyright (C) 2016 Codeplay Software Limited. All Rights Reserved.
//
// Contact: [email protected]
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// \file harris.cc
///
/// -------Example--------
/// Harris Corner Detector
///
/// \brief This example implements Harris Corner Detector
/// The Harris Corner Detector creates a matrix M based on its derivatives
/// M = sum w | Dx^2 Dx*Dy |
/// | Dx*Dy Dy^2 |
/// where w is the a 3x3 window of ones
/// the corners are detected based on the formula
/// H = det(M)-k*(trace(M)^2)
// include OpenCV for camera display
#include <opencv2/opencv.hpp>
// include VisionCpp
#include <visioncpp.hpp>
// tunable parameter for the Harris
constexpr float k_param = 0.04f; // k parameter (usually 0.02 - 0.04)
constexpr float threshold = 0.5f; // threhold parameter
constexpr int windowSize = 7; // window size for non-maximal suppresion
constexpr int halfWindowSize = windowSize / 2; // half window size
// Below a set of operators created to implement the algorithm
// operator created to perform a power of 2 of the image
struct PowerOf2 {
template <typename T>
const float operator()(const T &t) {
return t * t;
}
};
// operator for element-wise multiplication of two images
struct Mul {
template <typename T1, typename T2>
float operator()(const T1 &t1, const T2 &t2) {
return t1 * t2;
}
};
// operator to add two images
struct Add {
template <typename T1, typename T2>
float operator()(const T1 &t1, const T2 &t2) {
return t1 + t2;
}
};
// operator to subtract two images
struct Sub {
template <typename T1, typename T2>
float operator()(const T1 &t1, const T2 &t2) {
return t1 - t2;
}
};
// convolution for a custom filter in a one-dimensional image
struct Filter2D {
template <typename T1, typename T2>
float operator()(const T1 &nbr, const T2 &fltr) {
int hs_c = (fltr.cols / 2);
int hs_r = (fltr.rows / 2);
float out = 0;
for (int i2 = -hs_c, i = 0; i2 <= hs_c; i2++, i++)
for (int j2 = -hs_r, j = 0; j2 <= hs_r; j2++, j++)
out += (nbr.at(nbr.I_c + i2, nbr.I_r + j2) * fltr.at(i, j));
return out;
}
};
// Convert from float to unsigned char one channel
struct FloatToU8C1 {
visioncpp::pixel::U8C1 operator()(const float &t) {
return visioncpp::pixel::U8C1(static_cast<unsigned char>(t * 255));
}
};
// apply threshold operation to the image
struct Thresh {
template <typename T, typename Thresh>
float operator()(const T &t, const Thresh &thresh) {
return t > thresh ? 1.0f : 0.0f;
}
};
// non-maximal suppresion, supress all values which are not the maximum in a
// neighbourhood
struct NonMaximalSuppresion {
template <typename T>
float operator()(const T &im) {
float currentPixel{im.at(im.I_c, im.I_r)};
for (int i = -halfWindowSize; i <= halfWindowSize; i++) {
for (int j = -halfWindowSize; j <= halfWindowSize; j++) {
if (currentPixel < im.at(im.I_c + i, im.I_r + j)) {
return 0.0f;
}
}
}
return currentPixel;
}
};
// main program
int main(int argc, char **argv) {
// open video or camera
cv::VideoCapture cap;
if (argc == 1) {
cap.open(0);
std::cout << "To use video" << std::endl;
std::cout << "example>: ./example path/to/video.avi" << std::endl;
} else if (argc > 1) {
cap.open(argv[1]);
}
// check if we succeeded
if (!cap.isOpened()) {
std::cout << "Opening Camera/Video Failed." << std::endl;
return -1;
}
// selecting device
auto dev = visioncpp::make_device<visioncpp::backend::sycl,
visioncpp::device::cpu>();
// defining the image size constants
constexpr size_t COLS = 640;
constexpr size_t ROWS = 480;
// Shared Memory variable
constexpr size_t SM = 16;
// init input image
cv::Mat input;
// creating a pointer to store the results
std::shared_ptr<unsigned char> output(
new unsigned char[COLS * ROWS],
[](unsigned char *dataMem) { delete[] dataMem; });
// init output image from OpenCV for displaying results
cv::Mat outputImage(ROWS, COLS, CV_8UC1, output.get());
// initializing the mask memories
float sobel_x[9] = {-1.0f, 0.0f, 1.0f, -2.0f, 0.0f, 2.0f, -1.0f, 0.0f, 1.0f};
float sobel_y[9] = {-1.0f, -2.0f, -1.0f, 0.0, 0.0f, 0.0f, 1.0f, 2.0f, 1.0f};
float sum_mask[9] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f};
for (;;) {
// Starting building the tree (use {} during the creation of the tree)
{
// read frame
cap.read(input);
// check if image was loaded
if (!input.data) {
break;
}
// resize input for the desirable size
cv::resize(input, input, cv::Size(COLS, ROWS), 0, 0, cv::INTER_CUBIC);
// the node which gets the input data from OpenCV
auto in =
visioncpp::terminal<visioncpp::pixel::U8C3, COLS, ROWS,
visioncpp::memory_type::Buffer2D>(input.data);
// the node which gets the output data
auto out =
visioncpp::terminal<visioncpp::pixel::U8C1, COLS, ROWS,
visioncpp::memory_type::Buffer2D>(output.get());
// convert to Float
auto frgb = visioncpp::point_operation<visioncpp::OP_U8C3ToF32C3>(in);
// convert to grey scale
auto fgrey = visioncpp::point_operation<visioncpp::OP_RGBToGREY>(frgb);
// applying derivative in X direction
auto px_filter =
visioncpp::terminal<float, 3, 3, visioncpp::memory_type::Buffer2D,
visioncpp::scope::Constant>(sobel_x);
auto px = visioncpp::neighbour_operation<Filter2D>(fgrey, px_filter);
// applying derivative in Y direction
auto py_filter =
visioncpp::terminal<float, 3, 3, visioncpp::memory_type::Buffer2D,
visioncpp::scope::Constant>(sobel_y);
auto py = visioncpp::neighbour_operation<Filter2D>(fgrey, py_filter);
// starting building the M matrix
auto px2 = visioncpp::point_operation<PowerOf2>(px);
auto py2 = visioncpp::point_operation<PowerOf2>(py);
auto pxy = visioncpp::point_operation<Mul>(px, py);
// breaking the tree before convolution for a better use of shared memory
auto kpx2 =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(px2);
auto kpy2 =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(py2);
auto kpxy =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(pxy);
// Summing neighbours
auto sum_mask_node =
visioncpp::terminal<float, 3, 3, visioncpp::memory_type::Buffer2D,
visioncpp::scope::Constant>(sum_mask);
auto sumpx2 =
visioncpp::neighbour_operation<Filter2D>(kpx2, sum_mask_node);
auto sumpy2 =
visioncpp::neighbour_operation<Filter2D>(kpy2, sum_mask_node);
auto sumpxy =
visioncpp::neighbour_operation<Filter2D>(kpxy, sum_mask_node);
// breaking the tree after convolution
auto ksumpx2 =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(sumpx2);
auto ksumpy2 =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(sumpy2);
auto ksumpxy =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(sumpxy);
// applying the formula det(M)-k*(trace(M)^2)
// det(M) = (ksumpx2*ksumpy2 - ksumpxy*ksumpxy)
auto mul1 = visioncpp::point_operation<Mul>(ksumpx2, ksumpy2);
auto mul2 = visioncpp::point_operation<PowerOf2>(ksumpxy);
auto det = visioncpp::point_operation<Sub>(mul1, mul2);
// trace(M) = ksumpx2 + ksumpy2
auto trace = visioncpp::point_operation<Add>(ksumpx2, ksumpy2);
// trace(M)^2
auto trace2 = visioncpp::point_operation<PowerOf2>(trace);
// k*(trace(M)^2)
auto k_node =
visioncpp::terminal<float, visioncpp::memory_type::Const>(k_param);
auto ktrace2 = visioncpp::point_operation<Mul>(trace2, k_node);
// harris = det(M)-k*(trace(M)^2)
auto harris = visioncpp::point_operation<Sub>(det, ktrace2);
// break tree before neighbour_operation
auto kharris =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(harris);
auto harris_non_maximum =
visioncpp::neighbour_operation<NonMaximalSuppresion, halfWindowSize,
halfWindowSize, halfWindowSize,
halfWindowSize>(kharris);
// break tree after neighbour_operation
auto kharris_non_maximum =
visioncpp::schedule<visioncpp::policy::Fuse, SM, SM, SM, SM>(
harris_non_maximum);
// apply a threshold
auto thresh_node =
visioncpp::terminal<float, visioncpp::memory_type::Const>(
static_cast<float>(threshold));
auto harrisTresh =
visioncpp::point_operation<Thresh>(kharris_non_maximum, thresh_node);
// convert to unsigned char for displaying purposes
// scale threhold to display
auto scale_node =
visioncpp::terminal<float, visioncpp::memory_type::Const>(
static_cast<float>(255.0f));
auto display = visioncpp::point_operation<visioncpp::OP_Scale>(
harrisTresh, scale_node);
// assign to the output
auto exec = visioncpp::assign(out, display);
// execute expression tree
visioncpp::execute<visioncpp::policy::Fuse, SM, SM, SM, SM>(exec, dev);
}
// Display results
cv::imshow("Reference Image", input);
cv::imshow("Harris Corner Detector", outputImage);
// check button pressed to finalize program
if (cv::waitKey(1) >= 0) break;
}
// release video/camera
cap.release();
return 0;
}