-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbi_seq_lm_input.py
201 lines (154 loc) · 5.58 KB
/
bi_seq_lm_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
import torch
import torch.optim as optim
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
torch.manual_seed(1337)
import config
conf = config.config()
import collections as col
USE_CUDA = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor
#we use https://spacy.io/models/ to parse sentences
f_parsing=open('./your_own_parsing_ouput.txt', "r")
toy_parsing=[]
temp=[]
for line in f_parsing.readlines():
if line.split()==[]:
toy_parsing.append(temp)
temp=[]
else:
temp.append(line.split())
f_parsing.close()
pos_seq=[]
dep_seq=[]
child=[]
father=[]
ori_seq=[]
lower_seq=[]
for sent in toy_parsing:
child_dict={}
temp_father=[]
for k in range(len(sent)+1):
child_dict[k]=[]
temp_father.append(k)
temp_pos=['BOS']
temp_dep=['BOS']
temp_ori_seq=['BOS']
temp_lower_seq=['BOS']
for token in sent:
temp_ori_seq.append(token[2])
temp_lower_seq.append(token[2].lower())
child_dict[int(token[1])].append(int(token[0]))
temp_father[int(token[0])]=int(token[1])
temp_pos.append(token[5])
temp_dep.append(token[4])
temp_pos[-1]='EOS'
temp_dep[-1]='EOS'
temp_ori_seq[-1]='EOS'
temp_lower_seq[-1]='EOS'
ori_seq.append(temp_ori_seq)
lower_seq.append(temp_lower_seq)
father.append(temp_father)
child.append(child_dict)
pos_seq.append(temp_pos)
dep_seq.append(temp_dep)
#%%
"""
inputs are word_seq, dep_seq, pos_seq
"""
for w, d, p in zip(lower_seq, dep_seq, pos_seq):
if len(w)!=len(d) or len(w)!=len(p) or len(d)!=len(p):
print "something wrong!"
def mapping(_list):
_2id={}
for i, item in enumerate(_list):
_2id[item]=i+1
return _2id
def prepare_data2id(word_seq, dep_seq, pos_seq):
word_vocab=set()
dep_vocab=set()
pos_vocab=set()
bag_of_words = []
for w_seq_i, d_seq_i, p_seq_i in zip(word_seq, dep_seq, pos_seq):
for w_i, d_i, p_i in zip(w_seq_i, d_seq_i, p_seq_i):
bag_of_words.append(w_i)
word_vocab.add(w_i)
dep_vocab.add(d_i)
pos_vocab.add(p_i)
freq_words = col.Counter(bag_of_words).items()
freq_words=sorted(freq_words, key=lambda s:s[-1], reverse=True)
assert len(freq_words)>conf.vocab_size
freq_vocab=[]
for w in freq_words[:conf.vocab_size]:
freq_vocab.append(w[0])
vocab_set=set(freq_vocab)
dep_vocab=list(dep_vocab)
pos_vocab=list(pos_vocab)
word2id=mapping(freq_vocab)
dep2id=mapping(dep_vocab)
pos2id=mapping(pos_vocab)
word_seq_id=[]
dep_seq_id=[]
pos_seq_id=[]
target_seq_id=[]
for w_seq_i, d_seq_i, p_seq_i in zip(word_seq, dep_seq, pos_seq):
temp_w=[]
temp_dep=[]
temp_pos=[]
for w_i, d_i, p_i in zip(w_seq_i, d_seq_i, p_seq_i):
if w_i in vocab_set:
temp_w.append(word2id[w_i])
else:
temp_w.append(len(freq_vocab))
temp_dep.append(dep2id[d_i])
temp_pos.append(pos2id[p_i])
word_seq_id.append(temp_w)
dep_seq_id.append(temp_dep)
pos_seq_id.append(temp_pos)
target_seq_id.append(temp_w[1:-1])
return word_seq_id, target_seq_id, dep_seq_id, pos_seq_id, \
word2id, dep2id, pos2id, freq_vocab
word_seq_id, target_seq_id, dep_seq_id, pos_seq_id, \
word2id, dep2id, pos2id, freq_vocab = prepare_data2id(lower_seq, dep_seq, pos_seq)
#%%
import RNN, masked_cross_entropy
lm_model = RNN.vanilla_RNN(freq_vocab, word2id, dep2id, pos2id,)
if USE_CUDA:
lm_model = lm_model.cuda()
optimizer = optim.Adam(lm_model.parameters(),lr=conf.lr)
#%%
train_word_seq_id, train_target_seq_id, train_dep_seq_id, train_pos_seq_id = \
word_seq_id[2000:], target_seq_id[2000:], dep_seq_id[2000:], pos_seq_id[2000:]
val_word_seq_id, val_target_seq_id, val_dep_seq_id, val_pos_seq_id = \
word_seq_id[1000:2000], target_seq_id[1000:2000], dep_seq_id[1000:2000], pos_seq_id[1000:2000]
test_word_seq_id, test_target_seq_id, test_dep_seq_id, test_pos_seq_id = \
word_seq_id[:1000], target_seq_id[:1000], dep_seq_id[:1000], pos_seq_id[:1000]
#%%
bz = conf.batch_size
for epoch in range(100):
#total_loss = 0
losses=[]
train_data = zip(train_word_seq_id, train_target_seq_id, train_dep_seq_id, train_pos_seq_id)
np.random.shuffle(train_data)
train_word_seq_id, train_target_seq_id, train_dep_seq_id, train_pos_seq_id= zip(*train_data)
nb = len(train_word_seq_id)/bz
for b_i in range(nb):
h0 = lm_model.init_hidden(bz)
lm_model.zero_grad()
logits, probs, word_padded_ids, target_padded_ids, indexs, mask = \
lm_model(train_word_seq_id[b_i*bz:(b_i+1)*bz],
train_dep_seq_id[b_i*bz:(b_i+1)*bz],
train_pos_seq_id[b_i*bz:(b_i+1)*bz],
train_target_seq_id[b_i*bz:(b_i+1)*bz],
h0,
is_training=True)
seq_lens = Variable(torch.sum(LongTensor(mask), 1))
loss = masked_cross_entropy.compute_loss(logits, target_padded_ids, seq_lens)
loss.backward()
#torch.nn.utils.clip_grad_norm(lm_model.parameters(), 0.5) # gradient clipping
optimizer.step()