-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patham_pretraining.py
319 lines (260 loc) · 12 KB
/
am_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
'''
Textual KD SLU
Copyright (c) 2021-present NAVER Corp.
Apache License v2.0
---
MIT License
Copyright (c) 2017 Sean Naren
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import logging
import sys
logger = logging.getLogger('root')
FORMAT = "[%(asctime)s] %(message)s"
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format=FORMAT)
logger.setLevel(logging.INFO)
logger.info('logger created')
logger.info('try to importing the others')
import argparse
import json
import os
import random
import time
import numpy as np
import torch
from warpctc_pytorch import CTCLoss
from loader.asr_data_loader import AudioDataLoader, SpectrogramDataset, BucketingSampler
from utility.decoder import GreedyDecoder
from utility import build_roberta_model
from models.ammodel import DeepSpeech, supported_rnns
from utility.util import check_loss
from models import CrossBert
parser = argparse.ArgumentParser(description='DeepSpeech training')
parser.add_argument('--train-manifest', metavar='DIR',
help='path to train manifest csv', default='data/train_manifest.csv')
parser.add_argument('--val-manifest', metavar='DIR',
help='path to validation manifest csv', default='data/val_manifest.csv')
parser.add_argument('--num-workers', default=4, type=int, help='Number of workers used in data-loading')
parser.add_argument('--epochs', default=70, type=int, help='Number of training epochs')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--silent', dest='silent', action='store_true', help='Turn off progress tracking per iteration')
parser.add_argument('--config', type=str)
def to_np(x):
return x.cpu().numpy()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def evaluate(test_loader, device, model, decoder, target_decoder, save_output=False, verbose=True, half=False):
model.eval()
total_cer, total_wer, num_tokens, num_chars = 0, 0, 0, 0
output_data = []
for i, (data) in enumerate(test_loader):
inputs, targets, input_percentages, target_sizes = data
input_sizes = input_percentages.mul_(int(inputs.size(2))).int()
inputs = inputs.type(torch.LongTensor).to(device)
if half:
inputs = inputs.half()
# unflatten targets
split_targets = []
offset = 0
for size in target_sizes:
split_targets.append(targets[offset:offset + size])
offset += size
out, output_sizes = model(inputs, input_sizes)
decoded_output, _ = decoder.decode(out, output_sizes)
target_strings = target_decoder.convert_to_strings(split_targets)
if save_output is not None:
# add output to data array, and continue
output_data.append((out.cpu().numpy(), output_sizes.numpy(), target_strings))
for x in range(len(target_strings)):
transcript, reference = decoded_output[x][0], target_strings[x][0]
wer_inst = decoder.wer(transcript, reference)
cer_inst = decoder.cer(transcript, reference)
total_wer += wer_inst
total_cer += cer_inst
num_tokens += len(reference.split())
num_chars += len(reference.replace(' ', ''))
if verbose and i%300 == 0:
logger.info('Ref:%s', reference.lower())
logger.info('Hyp:%s', transcript.lower())
logger.info('WER:%.4f\t'
'CER:%.4f',(float(wer_inst) / len(reference.split())), (float(cer_inst) / len(reference.replace(' ', ''))))
wer = float(total_wer) / num_tokens
cer = float(total_cer) / num_chars
return wer * 100, cer * 100, output_data
if __name__ == '__main__':
args = parser.parse_args()
##load config file
with open(args.config, 'r') as config_file:
config = json.load(config_file)
# Set seeds for determinism
torch.manual_seed(config['seed'])
torch.cuda.manual_seed_all(config['seed'])
np.random.seed(config['seed'])
random.seed(config['seed'])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main_proc = True
save_folder = config['save_folder']
os.makedirs(save_folder, exist_ok=True) # Ensure save folder exists
loss_results, cer_results, wer_results = torch.Tensor(config['epochs']), torch.Tensor(config['epochs']), torch.Tensor(
config['epochs'])
best_cer = None
avg_loss, start_epoch, start_iter = 0, 0, 0
# vq_bert = RobertaModel.from_pretrained(config['vq-bert_dir'],
# checkpoint_file=config['vq-bert'])
# text_bert = RobertaModel.from_pretrained(config['text-bert_dir'], checkpoint_file=config['text-bert'])
vq_arg_path = 'configs/args/vq_roberta.args'
vq_dict_path = config["vq_bert_dict"]
text_arg_path = 'configs/args/text_roberta.args'
text_dict_path = config["text_bert_dict"]
vq_bert = build_roberta_model(vq_dict_path, vq_arg_path)
text_bert = build_roberta_model(text_dict_path, text_arg_path)
rnn_type = config['rnn-type'].lower()
with open(config['label']) as label_file:
labels = str(''.join(json.load(label_file)))
premodel = CrossBert(vq_bert=vq_bert, text_bert=text_bert)
model_dict = torch.load(config['pre_kd_model'])
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in model_dict.items():
if 'module' in k:
k = k.replace('module.', '')
new_state_dict[k] = v
premodel.load_state_dict(new_state_dict)
model_dict = None
new_state_dict = None
del model_dict, new_state_dict
premodel = premodel.to(device)
model = DeepSpeech(rnn_hidden_size=config['hidden_size'],
nb_layers=config['hidden_layers'],
labels=labels,
rnn_type=supported_rnns[rnn_type],
bidirectional=True,
vq_bert=premodel)
decoder = GreedyDecoder(labels)
train_dataset = SpectrogramDataset(manifest_filepath=args.train_manifest, labels=labels, vq_bert=vq_bert)
test_dataset = SpectrogramDataset(manifest_filepath=args.val_manifest, labels=labels, vq_bert=vq_bert)
train_sampler = BucketingSampler(train_dataset, batch_size=config['batch_size'])
train_loader = AudioDataLoader(train_dataset,
num_workers=args.num_workers, batch_sampler=train_sampler)
test_loader = AudioDataLoader(test_dataset, batch_size=config['batch_size'],
num_workers=args.num_workers)
model = torch.nn.DataParallel(model)
model = model.to(device)
parameters = model.parameters()
optimizer = torch.optim.SGD(parameters, lr=config['lr'],
momentum=args.momentum, nesterov=True, weight_decay=1e-5)
criterion = CTCLoss()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
for epoch in range(start_epoch, config['epochs']):
model.train()
end = time.time()
start_epoch_time = time.time()
for i, (data) in enumerate(train_loader, start=start_iter):
if i == len(train_sampler):
break
inputs, targets, input_percentages, target_sizes = data
input_sizes = input_percentages.mul_(int(inputs.size(2))).int()
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.type(torch.LongTensor).to(device)
out, output_sizes = model(inputs, input_sizes)
out = out.transpose(0, 1) # TxNxH
float_out = out.float() # ensure float32 for loss
loss = criterion(float_out, targets, output_sizes, target_sizes).to(device)
loss = loss / inputs.size(0) # average the loss by minibatch
loss_value = loss.item()
# Check to ensure valid loss was calculated
valid_loss, error = check_loss(loss, loss_value)
if valid_loss:
optimizer.zero_grad()
# compute gradient
loss.backward()
optimizer.step()
else:
logger.info(error)
logger.info('Skipping grad update')
loss_value = 0
avg_loss += loss_value
losses.update(loss_value, inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if not args.silent:
logger.info('Epoch: [%d][%d/%d]\t'
'Time %.3f (%.3f)\t'
'Data %.3f (%.3f)\t'
'Loss %.4f (%.4f)\t',
(epoch + 1), (i + 1), len(train_sampler),
batch_time.val, batch_time.avg,
data_time.val, data_time.avg,
losses.val, losses.avg)
del loss, out, float_out
avg_loss /= len(train_sampler)
epoch_time = time.time() - start_epoch_time
logger.info('Training Summary Epoch: [%d]\t'
'Time taken (s): %.0f\t'
'Average Loss %.3f\t',
epoch + 1,
epoch_time,
avg_loss)
start_iter = 0 # Reset start iteration for next epoch
with torch.no_grad():
wer, cer, output_data = evaluate(test_loader=test_loader,
device=device,
model=model,
decoder=decoder,
target_decoder=decoder)
loss_results[epoch] = avg_loss
wer_results[epoch] = wer
cer_results[epoch] = cer
logger.info('Validation Summary Epoch: [%d]\t'
'Average WER %.3f\t'
'Average CER %.3f\t',
epoch + 1,
wer,
cer)
values = {
'loss_results': loss_results,
'cer_results': cer_results,
'wer_results': wer_results
}
for g in optimizer.param_groups:
g['lr'] = g['lr'] / config['learning_anneal']
logger.info('Learning rate annealed to: %.6f', g['lr'])
if main_proc and (best_cer is None or best_cer > cer):
logger.info('Found better validated model, saving to %s', config['save_path'])
torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
wer_results=wer_results, cer_results=cer_results)
, config['save_path'])
best_cer = cer
avg_loss = 0
logger.info('Shuffling batches...')
train_sampler.shuffle(epoch)