forked from shiwendai/Faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexHNSW.h
325 lines (231 loc) · 9.05 KB
/
IndexHNSW.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#pragma once
#include <vector>
#include <omp.h>
#include "IndexFlat.h"
#include "IndexPQ.h"
#include "IndexScalarQuantizer.h"
#include "utils.h"
namespace faiss {
/** Implementation of the Hierarchical Navigable Small World
* datastructure.
*
* Efficient and robust approximate nearest neighbor search using
* Hierarchical Navigable Small World graphs
*
* Yu. A. Malkov, D. A. Yashunin, arXiv 2017
*
* This implmentation is heavily influenced by the NMSlib
* implementation by Yury Malkov and Leonid Boystov
* (https://github.com/searchivarius/nmslib)
*
* The HNSW object stores only the neighbor link structure, see
* IndexHNSW below for the full index object.
*/
struct VisitedTable;
struct HNSW {
/// internal storage of vectors (32 bits: this is expensive)
typedef int storage_idx_t;
/// Faiss results are 64-bit
typedef faiss::Index::idx_t idx_t;
/** The HNSW structure does not store vectors, it only accesses
* them through this class.
*
* Functions are guaranteed to be be accessed only from 1 thread. */
struct DistanceComputer {
idx_t d;
/// called before computing distances
virtual void set_query (const float *x) = 0;
/// compute distance of vector i to current query
virtual float operator () (storage_idx_t i) = 0;
/// compute distance between two stored vectors
virtual float symmetric_dis(storage_idx_t i, storage_idx_t j) = 0;
virtual ~DistanceComputer () {}
};
/// assignment probability to each layer (sum=1)
std::vector<double> assign_probas;
/// number of neighbors stored per layer (cumulative), should not
/// be changed after first add
std::vector<int> cum_nneighbor_per_level;
/// level of each vector (base level = 1), size = ntotal
std::vector<int> levels;
/// offsets[i] is the offset in the neighbors array where vector i is stored
/// size ntotal + 1
std::vector<size_t> offsets;
/// neighbors[offsets[i]:offsets[i+1]] is the list of neighbors of vector i
/// for all levels. this is where all storage goes.
std::vector<storage_idx_t> neighbors;
/// entry point in the search structure (one of the points with maximum level
storage_idx_t entry_point;
faiss::RandomGenerator rng;
/// maximum level
int max_level;
/// expansion factor at construction time
int efConstruction;
/// expansion factor at search time
int efSearch;
/// during search: do we check whether the next best distance is good enough?
bool check_relative_distance;
/// number of entry points in levels > 0.
int upper_beam;
// methods that initialize the tree sizes
/// initialize the assign_probas and cum_nneighbor_per_level to
/// have 2*M links on level 0 and M links on levels > 0
void set_default_probas(int M, float levelMult);
/// set nb of neighbors for this level (before adding anything)
void set_nb_neighbors(int level_no, int n);
// methods that access the tree sizes
/// nb of neighbors for this level
int nb_neighbors(int layer_no) const;
/// cumumlative nb up to (and excluding) this level
int cum_nb_neighbors(int layer_no) const;
/// range of entries in the neighbors table of vertex no at layer_no
void neighbor_range(idx_t no, int layer_no,
size_t * begin, size_t * end) const;
/// only mandatory parameter: nb of neighbors
explicit HNSW(int M = 32);
/// pick a random level for a new point
int random_level();
/// add n random levels to table (for debugging...)
void fill_with_random_links(size_t n);
/** add point pt_id on all levels <= pt_level and build the link
* structure for them. */
void add_with_locks(DistanceComputer & ptdis, int pt_level, int pt_id,
std::vector<omp_lock_t> & locks,
VisitedTable &vt);
/// search interface
void search(DistanceComputer & qdis, int k,
idx_t *I, float * D,
VisitedTable &vt) const;
void reset();
void clear_neighbor_tables(int level);
void print_neighbor_stats(int level) const;
};
struct HNSWStats {
size_t n1, n2, n3;
size_t ndis;
size_t nreorder;
bool view;
HNSWStats () {reset (); }
void reset ();
};
// global var that collects them all
extern HNSWStats hnsw_stats;
class IndexHNSW;
struct ReconstructFromNeighbors {
typedef Index::idx_t idx_t;
typedef HNSW::storage_idx_t storage_idx_t;
const IndexHNSW & index;
size_t M; // number of neighbors
size_t k; // number of codebook entries
size_t nsq; // number of subvectors
size_t code_size;
int k_reorder; // nb to reorder. -1 = all
std::vector<float> codebook; // size nsq * k * (M + 1)
std::vector<uint8_t> codes; // size ntotal * code_size
size_t ntotal;
size_t d, dsub; // derived values
ReconstructFromNeighbors(const IndexHNSW & index,
size_t k=256, size_t nsq=1);
/// codes must be added in the correct order and the IndexHNSW
/// must be populated and sorted
void add_codes(size_t n, const float *x);
size_t compute_distances(size_t n, const idx_t *shortlist,
const float *query, float *distances) const;
/// called by add_codes
void estimate_code(const float *x, storage_idx_t i, uint8_t *code) const;
/// called by compute_distances
void reconstruct(storage_idx_t i, float *x, float *tmp) const;
void reconstruct_n(storage_idx_t n0, storage_idx_t ni, float *x) const;
/// get the M+1 -by-d table for neighbor coordinates for vector i
void get_neighbor_table(storage_idx_t i, float *out) const;
};
/** The HNSW index is a normal random-access index with a HNSW
* link structure built on top */
struct IndexHNSW: Index {
typedef HNSW::storage_idx_t storage_idx_t;
// the link strcuture
HNSW hnsw;
// the sequential storage
bool own_fields;
Index * storage;
ReconstructFromNeighbors *reconstruct_from_neighbors;
explicit IndexHNSW (int d = 0, int M = 32);
explicit IndexHNSW (Index * storage, int M = 32);
~IndexHNSW() override;
// get a DistanceComputer object for this kind of storage
virtual HNSW::DistanceComputer * get_distance_computer() const = 0;
void add(idx_t n, const float *x) override;
/// Trains the storage if needed
void train(idx_t n, const float* x) override;
/// entry point for search
void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
void reconstruct(idx_t key, float* recons) const override;
void reset () override;
void shrink_level_0_neighbors(int size);
/** Perform search only on level 0, given the starting points for
* each vertex.
*
* @param search_type 1:perform one search per nprobe, 2: enqueue
* all entry points
*/
void search_level_0(idx_t n, const float *x, idx_t k,
const storage_idx_t *nearest, const float *nearest_d,
float *distances, idx_t *labels, int nprobe = 1,
int search_type = 1) const;
/// alternative graph building
void init_level_0_from_knngraph(
int k, const float *D, const idx_t *I);
/// alternative graph building
void init_level_0_from_entry_points(
int npt, const storage_idx_t *points,
const storage_idx_t *nearests);
// reorder links from nearest to farthest
void reorder_links();
void link_singletons();
};
/** Flat index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWFlat: IndexHNSW {
IndexHNSWFlat();
IndexHNSWFlat(int d, int M);
HNSW::DistanceComputer * get_distance_computer() const override;
};
/** PQ index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWPQ: IndexHNSW {
IndexHNSWPQ();
IndexHNSWPQ(int d, int pq_m, int M);
void train(idx_t n, const float* x) override;
HNSW::DistanceComputer * get_distance_computer() const override;
};
/** SQ index topped with with a HNSW structure to access elements
* more efficiently.
*/
struct IndexHNSWSQ: IndexHNSW {
IndexHNSWSQ();
IndexHNSWSQ(int d, ScalarQuantizer::QuantizerType qtype, int M);
HNSW::DistanceComputer * get_distance_computer() const override;
};
/** 2-level code structure with fast random access
*/
struct IndexHNSW2Level: IndexHNSW {
IndexHNSW2Level();
IndexHNSW2Level(Index *quantizer, size_t nlist, int m_pq, int M);
HNSW::DistanceComputer * get_distance_computer() const override;
void flip_to_ivf();
/// entry point for search
void search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const override;
};
}