-
Notifications
You must be signed in to change notification settings - Fork 41
/
pingData.go
117 lines (85 loc) · 2.66 KB
/
pingData.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*
Copyright 2016 The Smudge Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package smudge
import (
"math"
"sync"
)
type pingData struct {
sync.RWMutex
// The ping data. Initialized with default values by NewPingData()
pings []uint32
// The index in pings where the next datapoint will be added
pointer int
// The last calulcated mean. Recalculated if updated is true
lastMean float64
// The last calulcated standard deviation. Recalculated if updated is true
lastStddev float64
// The modified flag. Set to true when a datapoint is added
updated bool
}
func newPingData(initialAverage int, historyCount int) pingData {
newPings := make([]uint32, historyCount, historyCount)
for i := 0; i < historyCount; i++ {
newPings[i] = uint32(initialAverage)
}
return pingData{pings: newPings, updated: true}
}
func (pd *pingData) add(datapoint uint32) {
pd.Lock()
pd.pings[pd.pointer] = datapoint
// Advance the pointer
pd.pointer++
pd.pointer %= len(pd.pings)
pd.updated = true
pd.Unlock()
}
// mean returns the simple mean (average) of the collected datapoints.
func (pd *pingData) mean() float64 {
pd.data()
return pd.lastMean
}
// Returns the mean modified by the requested number of sigmas
func (pd *pingData) nSigma(sigmas float64) float64 {
mean, stddev := pd.data()
return mean + (sigmas * stddev)
}
// stddev returns the standard deviation of the collected datapoints
func (pd *pingData) stddev() float64 {
pd.data()
return pd.lastStddev
}
// Returns both mean and standard deviation
func (pd *pingData) data() (float64, float64) {
if pd.updated {
pd.Lock()
// Calculate the mean
var accumulator float64
for _, d := range pd.pings {
accumulator += float64(d)
}
pd.lastMean = accumulator / float64(len(pd.pings))
// Subtract the mean and square the result; calculcate the mean
accumulator = 0.0 // Reusing accumulator.
for _, d := range pd.pings {
diff := pd.lastMean - float64(d)
accumulator += math.Pow(diff, 2.0)
}
squareDiffMean := accumulator / float64(len(pd.pings))
// Sqrt the square diffs mean and we have our stddev
pd.lastStddev = math.Sqrt(squareDiffMean)
pd.updated = false
pd.Unlock()
}
return pd.lastMean, pd.lastStddev
}