-
Notifications
You must be signed in to change notification settings - Fork 652
/
mobilenet_v1.py
executable file
·154 lines (118 loc) · 5.1 KB
/
mobilenet_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# coding: utf-8
from __future__ import division
"""
Creates a MobileNet Model as defined in:
Andrew G. Howard Menglong Zhu Bo Chen, et.al. (2017).
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
Copyright (c) Yang Lu, 2017
Modified By cleardusk
"""
import math
import torch.nn as nn
__all__ = ['mobilenet_2', 'mobilenet_1', 'mobilenet_075', 'mobilenet_05', 'mobilenet_025']
class DepthWiseBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, prelu=False):
super(DepthWiseBlock, self).__init__()
inplanes, planes = int(inplanes), int(planes)
self.conv_dw = nn.Conv2d(inplanes, inplanes, kernel_size=3, padding=1, stride=stride, groups=inplanes,
bias=False)
self.bn_dw = nn.BatchNorm2d(inplanes)
self.conv_sep = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn_sep = nn.BatchNorm2d(planes)
if prelu:
self.relu = nn.PReLU()
else:
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv_dw(x)
out = self.bn_dw(out)
out = self.relu(out)
out = self.conv_sep(out)
out = self.bn_sep(out)
out = self.relu(out)
return out
class MobileNet(nn.Module):
def __init__(self, widen_factor=1.0, num_classes=1000, prelu=False, input_channel=3):
""" Constructor
Args:
widen_factor: config of widen_factor
num_classes: number of classes
"""
super(MobileNet, self).__init__()
block = DepthWiseBlock
self.conv1 = nn.Conv2d(input_channel, int(32 * widen_factor), kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(int(32 * widen_factor))
if prelu:
self.relu = nn.PReLU()
else:
self.relu = nn.ReLU(inplace=True)
self.dw2_1 = block(32 * widen_factor, 64 * widen_factor, prelu=prelu)
self.dw2_2 = block(64 * widen_factor, 128 * widen_factor, stride=2, prelu=prelu)
self.dw3_1 = block(128 * widen_factor, 128 * widen_factor, prelu=prelu)
self.dw3_2 = block(128 * widen_factor, 256 * widen_factor, stride=2, prelu=prelu)
self.dw4_1 = block(256 * widen_factor, 256 * widen_factor, prelu=prelu)
self.dw4_2 = block(256 * widen_factor, 512 * widen_factor, stride=2, prelu=prelu)
self.dw5_1 = block(512 * widen_factor, 512 * widen_factor, prelu=prelu)
self.dw5_2 = block(512 * widen_factor, 512 * widen_factor, prelu=prelu)
self.dw5_3 = block(512 * widen_factor, 512 * widen_factor, prelu=prelu)
self.dw5_4 = block(512 * widen_factor, 512 * widen_factor, prelu=prelu)
self.dw5_5 = block(512 * widen_factor, 512 * widen_factor, prelu=prelu)
self.dw5_6 = block(512 * widen_factor, 1024 * widen_factor, stride=2, prelu=prelu)
self.dw6 = block(1024 * widen_factor, 1024 * widen_factor, prelu=prelu)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(int(1024 * widen_factor), num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.dw2_1(x)
x = self.dw2_2(x)
x = self.dw3_1(x)
x = self.dw3_2(x)
x = self.dw4_1(x)
x = self.dw4_2(x)
x = self.dw5_1(x)
x = self.dw5_2(x)
x = self.dw5_3(x)
x = self.dw5_4(x)
x = self.dw5_5(x)
x = self.dw5_6(x)
x = self.dw6(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def mobilenet(widen_factor=1.0, num_classes=1000):
"""
Construct MobileNet.
widen_factor=1.0 for mobilenet_1
widen_factor=0.75 for mobilenet_075
widen_factor=0.5 for mobilenet_05
widen_factor=0.25 for mobilenet_025
"""
model = MobileNet(widen_factor=widen_factor, num_classes=num_classes)
return model
def mobilenet_2(num_classes=62, input_channel=3):
model = MobileNet(widen_factor=2.0, num_classes=num_classes, input_channel=input_channel)
return model
def mobilenet_1(num_classes=62, input_channel=3):
model = MobileNet(widen_factor=1.0, num_classes=num_classes, input_channel=input_channel)
return model
def mobilenet_075(num_classes=62, input_channel=3):
model = MobileNet(widen_factor=0.75, num_classes=num_classes, input_channel=input_channel)
return model
def mobilenet_05(num_classes=62, input_channel=3):
model = MobileNet(widen_factor=0.5, num_classes=num_classes, input_channel=input_channel)
return model
def mobilenet_025(num_classes=62, input_channel=3):
model = MobileNet(widen_factor=0.25, num_classes=num_classes, input_channel=input_channel)
return model