-
Notifications
You must be signed in to change notification settings - Fork 67
/
basicvsr_pp.py
434 lines (349 loc) · 16.4 KB
/
basicvsr_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import constant_init
from mmcv.ops import ModulatedDeformConv2d, modulated_deform_conv2d
from mmcv.runner import load_checkpoint
from mmedit.models.backbones.sr_backbones.basicvsr_net import (
ResidualBlocksWithInputConv, SPyNet)
from mmedit.models.common import PixelShufflePack, flow_warp
from mmedit.models.registry import BACKBONES
from mmedit.utils import get_root_logger
@BACKBONES.register_module()
class BasicVSRPlusPlus(nn.Module):
"""BasicVSR++ network structure.
Support either x4 upsampling or same size output.
Paper:
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation
and Alignment
Args:
mid_channels (int, optional): Channel number of the intermediate
features. Default: 64.
num_blocks (int, optional): The number of residual blocks in each
propagation branch. Default: 7.
max_residue_magnitude (int): The maximum magnitude of the offset
residue (Eq. 6 in paper). Default: 10.
is_low_res_input (bool, optional): Whether the input is low-resolution
or not. If False, the output resolution is equal to the input
resolution. Default: True.
spynet_pretrained (str, optional): Pre-trained model path of SPyNet.
Default: None.
cpu_cache_length (int, optional): When the length of sequence is larger
than this value, the intermediate features are sent to CPU. This
saves GPU memory, but slows down the inference speed. You can
increase this number if you have a GPU with large memory.
Default: 100.
"""
def __init__(self,
mid_channels=64,
num_blocks=7,
max_residue_magnitude=10,
is_low_res_input=True,
spynet_pretrained=None,
cpu_cache_length=100):
super().__init__()
self.mid_channels = mid_channels
self.is_low_res_input = is_low_res_input
self.cpu_cache_length = cpu_cache_length
# optical flow
self.spynet = SPyNet(pretrained=spynet_pretrained)
# feature extraction module
if is_low_res_input:
self.feat_extract = ResidualBlocksWithInputConv(3, mid_channels, 5)
else:
self.feat_extract = nn.Sequential(
nn.Conv2d(3, mid_channels, 3, 2, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(mid_channels, mid_channels, 3, 2, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
ResidualBlocksWithInputConv(mid_channels, mid_channels, 5))
# propagation branches
self.deform_align = nn.ModuleDict()
self.backbone = nn.ModuleDict()
modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
for i, module in enumerate(modules):
self.deform_align[module] = SecondOrderDeformableAlignment(
2 * mid_channels,
mid_channels,
3,
padding=1,
deform_groups=16,
max_residue_magnitude=max_residue_magnitude)
self.backbone[module] = ResidualBlocksWithInputConv(
(2 + i) * mid_channels, mid_channels, num_blocks)
# upsampling module
self.reconstruction = ResidualBlocksWithInputConv(
5 * mid_channels, mid_channels, 5)
self.upsample1 = PixelShufflePack(
mid_channels, mid_channels, 2, upsample_kernel=3)
self.upsample2 = PixelShufflePack(
mid_channels, 64, 2, upsample_kernel=3)
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
self.img_upsample = nn.Upsample(
scale_factor=4, mode='bilinear', align_corners=False)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
# check if the sequence is augmented by flipping
self.is_mirror_extended = False
def check_if_mirror_extended(self, lqs):
"""Check whether the input is a mirror-extended sequence.
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the
(t-1-i)-th frame.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
"""
if lqs.size(1) % 2 == 0:
lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
self.is_mirror_extended = True
def compute_flow(self, lqs):
"""Compute optical flow using SPyNet for feature alignment.
Note that if the input is an mirror-extended sequence, 'flows_forward'
is not needed, since it is equal to 'flows_backward.flip(1)'.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
Return:
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the
flows used for forward-time propagation (current to previous).
'flows_backward' corresponds to the flows used for
backward-time propagation (current to next).
"""
n, t, c, h, w = lqs.size()
lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)
flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
flows_forward = None
else:
flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)
if self.cpu_cache:
flows_backward = flows_backward.cpu()
flows_forward = flows_forward.cpu()
return flows_forward, flows_backward
def propagate(self, feats, flows, module_name):
"""Propagate the latent features throughout the sequence.
Args:
feats dict(list[tensor]): Features from previous branches. Each
component is a list of tensors with shape (n, c, h, w).
flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).
module_name (str): The name of the propgation branches. Can either
be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.
Return:
dict(list[tensor]): A dictionary containing all the propagated
features. Each key in the dictionary corresponds to a
propagation branch, which is represented by a list of tensors.
"""
n, t, _, h, w = flows.size()
frame_idx = range(0, t + 1)
flow_idx = range(-1, t)
mapping_idx = list(range(0, len(feats['spatial'])))
mapping_idx += mapping_idx[::-1]
if 'backward' in module_name:
frame_idx = frame_idx[::-1]
flow_idx = frame_idx
feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
for i, idx in enumerate(frame_idx):
feat_current = feats['spatial'][mapping_idx[idx]]
if self.cpu_cache:
feat_current = feat_current.cuda()
feat_prop = feat_prop.cuda()
# second-order deformable alignment
if i > 0:
flow_n1 = flows[:, flow_idx[i], :, :, :]
if self.cpu_cache:
flow_n1 = flow_n1.cuda()
cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))
# initialize second-order features
feat_n2 = torch.zeros_like(feat_prop)
flow_n2 = torch.zeros_like(flow_n1)
cond_n2 = torch.zeros_like(cond_n1)
if i > 1: # second-order features
feat_n2 = feats[module_name][-2]
if self.cpu_cache:
feat_n2 = feat_n2.cuda()
flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
if self.cpu_cache:
flow_n2 = flow_n2.cuda()
flow_n2 = flow_n1 + flow_warp(flow_n2,
flow_n1.permute(0, 2, 3, 1))
cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))
# flow-guided deformable convolution
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
feat_prop = self.deform_align[module_name](feat_prop, cond,
flow_n1, flow_n2)
# concatenate and residual blocks
feat = [feat_current] + [
feats[k][idx]
for k in feats if k not in ['spatial', module_name]
] + [feat_prop]
if self.cpu_cache:
feat = [f.cuda() for f in feat]
feat = torch.cat(feat, dim=1)
feat_prop = feat_prop + self.backbone[module_name](feat)
feats[module_name].append(feat_prop)
if self.cpu_cache:
feats[module_name][-1] = feats[module_name][-1].cpu()
torch.cuda.empty_cache()
if 'backward' in module_name:
feats[module_name] = feats[module_name][::-1]
return feats
def upsample(self, lqs, feats):
"""Compute the output image given the features.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
feats (dict): The features from the propgation branches.
Returns:
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
"""
outputs = []
num_outputs = len(feats['spatial'])
mapping_idx = list(range(0, num_outputs))
mapping_idx += mapping_idx[::-1]
for i in range(0, lqs.size(1)):
hr = [feats[k].pop(0) for k in feats if k != 'spatial']
hr.insert(0, feats['spatial'][mapping_idx[i]])
hr = torch.cat(hr, dim=1)
if self.cpu_cache:
hr = hr.cuda()
hr = self.reconstruction(hr)
hr = self.lrelu(self.upsample1(hr))
hr = self.lrelu(self.upsample2(hr))
hr = self.lrelu(self.conv_hr(hr))
hr = self.conv_last(hr)
if self.is_low_res_input:
hr += self.img_upsample(lqs[:, i, :, :, :])
else:
hr += lqs[:, i, :, :, :]
if self.cpu_cache:
hr = hr.cpu()
torch.cuda.empty_cache()
outputs.append(hr)
return torch.stack(outputs, dim=1)
def forward(self, lqs):
"""Forward function for BasicVSR++.
Args:
lqs (tensor): Input low quality (LQ) sequence with
shape (n, t, c, h, w).
Returns:
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
"""
n, t, c, h, w = lqs.size()
# whether to cache the features in CPU (no effect if using CPU)
if t > self.cpu_cache_length and lqs.is_cuda:
self.cpu_cache = True
else:
self.cpu_cache = False
if self.is_low_res_input:
lqs_downsample = lqs.clone()
else:
lqs_downsample = F.interpolate(
lqs.view(-1, c, h, w), scale_factor=0.25,
mode='bicubic').view(n, t, c, h // 4, w // 4)
# check whether the input is an extended sequence
self.check_if_mirror_extended(lqs)
feats = {}
# compute spatial features
if self.cpu_cache:
feats['spatial'] = []
for i in range(0, t):
feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
feats['spatial'].append(feat)
torch.cuda.empty_cache()
else:
feats_ = self.feat_extract(lqs.view(-1, c, h, w))
h, w = feats_.shape[2:]
feats_ = feats_.view(n, t, -1, h, w)
feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]
# compute optical flow using the low-res inputs
assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
'The height and width of low-res inputs must be at least 64, '
f'but got {h} and {w}.')
flows_forward, flows_backward = self.compute_flow(lqs_downsample)
# feature propgation
for iter_ in [1, 2]:
for direction in ['backward', 'forward']:
module = f'{direction}_{iter_}'
feats[module] = []
if direction == 'backward':
flows = flows_backward
elif flows_forward is not None:
flows = flows_forward
else:
flows = flows_backward.flip(1)
feats = self.propagate(feats, flows, module)
if self.cpu_cache:
del flows
torch.cuda.empty_cache()
return self.upsample(lqs, feats)
def init_weights(self, pretrained=None, strict=True):
"""Init weights for models.
Args:
pretrained (str, optional): Path for pretrained weights. If given
None, pretrained weights will not be loaded. Default: None.
strict (bool, optional): Whether strictly load the pretrained
model. Default: True.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=strict, logger=logger)
elif pretrained is not None:
raise TypeError(f'"pretrained" must be a str or None. '
f'But received {type(pretrained)}.')
class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
"""Second-order deformable alignment module.
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int or tuple[int]): Same as nn.Conv2d.
padding (int or tuple[int]): Same as nn.Conv2d.
dilation (int or tuple[int]): Same as nn.Conv2d.
groups (int): Same as nn.Conv2d.
bias (bool or str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
False.
max_residue_magnitude (int): The maximum magnitude of the offset
residue (Eq. 6 in paper). Default: 10.
"""
def __init__(self, *args, **kwargs):
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
self.conv_offset = nn.Sequential(
nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.1, inplace=True),
nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1),
)
self.init_offset()
def init_offset(self):
constant_init(self.conv_offset[-1], val=0, bias=0)
def forward(self, x, extra_feat, flow_1, flow_2):
extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
out = self.conv_offset(extra_feat)
o1, o2, mask = torch.chunk(out, 3, dim=1)
# offset
offset = self.max_residue_magnitude * torch.tanh(
torch.cat((o1, o2), dim=1))
offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
offset_1 = offset_1 + flow_1.flip(1).repeat(1,
offset_1.size(1) // 2, 1,
1)
offset_2 = offset_2 + flow_2.flip(1).repeat(1,
offset_2.size(1) // 2, 1,
1)
offset = torch.cat([offset_1, offset_2], dim=1)
# mask
mask = torch.sigmoid(mask)
return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
self.stride, self.padding,
self.dilation, self.groups,
self.deform_groups)