Skip to content

Commit ca498ec

Browse files
authored
Add files via upload
1 parent d66eb39 commit ca498ec

File tree

6 files changed

+1018
-0
lines changed

6 files changed

+1018
-0
lines changed

ptuning/arguments.py

+227
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,227 @@
1+
from dataclasses import dataclass, field
2+
from typing import Optional
3+
4+
5+
@dataclass
6+
class ModelArguments:
7+
"""
8+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
9+
"""
10+
11+
model_name_or_path: str = field(
12+
default = r'E:\pretraing_models\torch\chatglm2_6b',
13+
# default = r'E:\pretraing_models\torch\chatglm3-6b-base',
14+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
15+
)
16+
ptuning_checkpoint: str = field(
17+
default=None, metadata={"help": "Path to p-tuning v2 checkpoints"}
18+
)
19+
config_name: Optional[str] = field(
20+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
21+
)
22+
tokenizer_name: Optional[str] = field(
23+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
24+
)
25+
cache_dir: Optional[str] = field(
26+
default=None,
27+
metadata={"help": "Where to store the pretrained models "
28+
"wnloaded from huggingface.co"},
29+
)
30+
use_fast_tokenizer: bool = field(
31+
default=True,
32+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
33+
)
34+
model_revision: str = field(
35+
default="main",
36+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
37+
)
38+
use_auth_token: bool = field(
39+
default=False,
40+
metadata={
41+
"help": (
42+
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
43+
"with private models)."
44+
)
45+
},
46+
)
47+
resize_position_embeddings: Optional[bool] = field(
48+
default=None,
49+
metadata={
50+
"help": (
51+
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
52+
"the model's position embeddings."
53+
)
54+
},
55+
)
56+
quantization_bit: Optional[int] = field(
57+
default=None
58+
)
59+
pre_seq_len: Optional[int] = field(
60+
default=None
61+
)
62+
prefix_projection: bool = field(
63+
default=False
64+
)
65+
66+
67+
@dataclass
68+
class DataTrainingArguments:
69+
"""
70+
Arguments pertaining to what data we are going to input our model for training and eval.
71+
"""
72+
73+
lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
74+
75+
dataset_name: Optional[str] = field(
76+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
77+
)
78+
dataset_config_name: Optional[str] = field(
79+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
80+
)
81+
prompt_column: Optional[str] = field(
82+
default=None,
83+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
84+
)
85+
response_column: Optional[str] = field(
86+
default=None,
87+
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
88+
)
89+
history_column: Optional[str] = field(
90+
default=None,
91+
metadata={"help": "The name of the column in the datasets containing the history of chat."},
92+
)
93+
train_file: Optional[str] = field(
94+
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
95+
)
96+
validation_file: Optional[str] = field(
97+
default=None,
98+
metadata={
99+
"help": (
100+
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
101+
)
102+
},
103+
)
104+
test_file: Optional[str] = field(
105+
default=None,
106+
metadata={
107+
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
108+
},
109+
)
110+
overwrite_cache: bool = field(
111+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
112+
)
113+
preprocessing_num_workers: Optional[int] = field(
114+
default=None,
115+
metadata={"help": "The number of processes to use for the preprocessing."},
116+
)
117+
max_source_length: Optional[int] = field(
118+
default=1024,
119+
metadata={
120+
"help": (
121+
"The maximum total input sequence length after tokenization. Sequences longer "
122+
"than this will be truncated, sequences shorter will be padded."
123+
)
124+
},
125+
)
126+
max_target_length: Optional[int] = field(
127+
default=128,
128+
metadata={
129+
"help": (
130+
"The maximum total sequence length for target text after tokenization. Sequences longer "
131+
"than this will be truncated, sequences shorter will be padded."
132+
)
133+
},
134+
)
135+
val_max_target_length: Optional[int] = field(
136+
default=None,
137+
metadata={
138+
"help": (
139+
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
140+
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
141+
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
142+
"during ``evaluate`` and ``predict``."
143+
)
144+
},
145+
)
146+
pad_to_max_length: bool = field(
147+
default=False,
148+
metadata={
149+
"help": (
150+
"Whether to pad all samples to model maximum sentence length. "
151+
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
152+
"efficient on GPU but very bad for TPU."
153+
)
154+
},
155+
)
156+
max_train_samples: Optional[int] = field(
157+
default=None,
158+
metadata={
159+
"help": (
160+
"For debugging purposes or quicker training, truncate the number of training examples to this "
161+
"value if set."
162+
)
163+
},
164+
)
165+
max_eval_samples: Optional[int] = field(
166+
default=None,
167+
metadata={
168+
"help": (
169+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
170+
"value if set."
171+
)
172+
},
173+
)
174+
max_predict_samples: Optional[int] = field(
175+
default=None,
176+
metadata={
177+
"help": (
178+
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
179+
"value if set."
180+
)
181+
},
182+
)
183+
num_beams: Optional[int] = field(
184+
default=None,
185+
metadata={
186+
"help": (
187+
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
188+
"which is used during ``evaluate`` and ``predict``."
189+
)
190+
},
191+
)
192+
ignore_pad_token_for_loss: bool = field(
193+
default=True,
194+
metadata={
195+
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
196+
},
197+
)
198+
source_prefix: Optional[str] = field(
199+
default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
200+
)
201+
202+
forced_bos_token: Optional[str] = field(
203+
default=None,
204+
metadata={
205+
"help": (
206+
"The token to force as the first generated token after the decoder_start_token_id."
207+
"Useful for multilingual models like mBART where the first generated token"
208+
"needs to be the target language token (Usually it is the target language token)"
209+
)
210+
},
211+
)
212+
213+
214+
215+
def __post_init__(self):
216+
if self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None:
217+
raise ValueError("Need either a dataset name or a training/validation/test file.")
218+
else:
219+
if self.train_file is not None:
220+
extension = self.train_file.split(".")[-1]
221+
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
222+
if self.validation_file is not None:
223+
extension = self.validation_file.split(".")[-1]
224+
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
225+
if self.val_max_target_length is None:
226+
self.val_max_target_length = self.max_target_length
227+

ptuning/evaluate.sh

+25
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
PRE_SEQ_LEN=64
2+
STEP=3000
3+
NUM_GPUS=1
4+
5+
#torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \
6+
python main.py \
7+
--do_predict \
8+
--test_file ../data/dev.json \
9+
--overwrite_cache \
10+
--prompt_column instruction \
11+
--response_column output \
12+
--ptuning_checkpoint ./output/ner/model1/checkpoint-$STEP \
13+
--output_dir ./output/ner/model1/checkpoint-$STEP \
14+
--overwrite_output_dir \
15+
--max_source_length 352 \
16+
--max_target_length 200 \
17+
--per_device_eval_batch_size 8 \
18+
--predict_with_generate \
19+
--pre_seq_len $PRE_SEQ_LEN \
20+
21+
22+
23+
24+
# --max_source_length 512 \
25+
# --max_target_length 200 \

0 commit comments

Comments
 (0)