|
| 1 | +import os |
| 2 | +import math |
| 3 | +import pathlib |
| 4 | +from typing import Optional, Dict |
| 5 | +from dataclasses import dataclass, field |
| 6 | +import json |
| 7 | +import time |
| 8 | + |
| 9 | +import torch |
| 10 | +from torch.utils.data import Dataset |
| 11 | +import transformers |
| 12 | +from transformers.training_args import TrainingArguments |
| 13 | + |
| 14 | +os.environ["PL_TORCH_DISTRIBUTED_BACKEND"] = "gloo" |
| 15 | +os.environ["WANDB_DISABLED"] = "true" |
| 16 | + |
| 17 | + |
| 18 | +@dataclass |
| 19 | +class ModelArguments: |
| 20 | + model_name_or_path: Optional[str] = field(default=r"E:\pretraing_models\torch\baichuan2-7B-Chat") |
| 21 | + |
| 22 | + |
| 23 | +@dataclass |
| 24 | +class DataArguments: |
| 25 | + data_path: str = field( |
| 26 | + default=None, metadata={"help": "Path to the training data."} |
| 27 | + ) |
| 28 | + max_source_length: int = field( |
| 29 | + default=1000, |
| 30 | + metadata={ |
| 31 | + "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
| 32 | + }, |
| 33 | + ) |
| 34 | + max_target_length: int = field( |
| 35 | + default=200, |
| 36 | + metadata={ |
| 37 | + "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
| 38 | + }, |
| 39 | + ) |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +@dataclass |
| 44 | +class TrainingArguments(transformers.TrainingArguments): |
| 45 | + cache_dir: Optional[str] = field(default=None) |
| 46 | + optim: str = field(default="adamw_torch") |
| 47 | + use_lora: bool = field(default=True) |
| 48 | + model_max_length: int = field( |
| 49 | + default=1201, |
| 50 | + metadata={ |
| 51 | + "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." |
| 52 | + }, |
| 53 | + ) |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +class SupervisedDataset(Dataset): |
| 58 | + """Dataset for supervised fine-tuning.""" |
| 59 | + |
| 60 | + def __init__( |
| 61 | + self, |
| 62 | + data_path, |
| 63 | + tokenizer, |
| 64 | + model_source_length, |
| 65 | + user_tokens=[195], |
| 66 | + assistant_tokens=[196], |
| 67 | + ): |
| 68 | + super(SupervisedDataset, self).__init__() |
| 69 | + self.data = json.load(open(data_path)) |
| 70 | + self.tokenizer = tokenizer |
| 71 | + self.model_max_length = model_max_length |
| 72 | + self.user_tokens = user_tokens |
| 73 | + self.assistant_tokens = assistant_tokens |
| 74 | + self.ignore_index = -100 |
| 75 | + item = self.preprocessing(self.data[120]) |
| 76 | + # print("input:", self.tokenizer.decode(item["input_ids"])) |
| 77 | + labels = [] |
| 78 | + for id_ in item["labels"]: |
| 79 | + if id_ == -100: |
| 80 | + continue |
| 81 | + labels.append(id_) |
| 82 | + print("label:", self.tokenizer.decode(labels)) |
| 83 | + |
| 84 | + def __len__(self): |
| 85 | + return len(self.data) |
| 86 | + |
| 87 | + def preprocessing(self, example): |
| 88 | + input_ids = [] |
| 89 | + labels = [] |
| 90 | + |
| 91 | + for message in example["conversations"]: |
| 92 | + from_ = message["from"] |
| 93 | + value = message["value"] |
| 94 | + value_ids = self.tokenizer.encode(value) |
| 95 | + |
| 96 | + if from_ == "human": |
| 97 | + input_ids += self.user_tokens + value_ids |
| 98 | + labels += [self.tokenizer.eos_token_id] + [self.ignore_index] * len( |
| 99 | + value_ids |
| 100 | + ) |
| 101 | + else: |
| 102 | + input_ids += self.assistant_tokens + value_ids |
| 103 | + labels += [self.ignore_index] + value_ids |
| 104 | + input_ids.append(self.tokenizer.eos_token_id) |
| 105 | + labels.append(self.tokenizer.eos_token_id) |
| 106 | + input_ids = input_ids[: self.model_max_length] |
| 107 | + labels = labels[: self.model_max_length] |
| 108 | + input_ids += [self.tokenizer.pad_token_id] * ( |
| 109 | + self.model_max_length - len(input_ids) |
| 110 | + ) |
| 111 | + labels += [self.ignore_index] * (self.model_max_length - len(labels)) |
| 112 | + input_ids = torch.LongTensor(input_ids) |
| 113 | + labels = torch.LongTensor(labels) |
| 114 | + attention_mask = input_ids.ne(self.tokenizer.pad_token_id) |
| 115 | + return { |
| 116 | + "input_ids": input_ids, |
| 117 | + "labels": labels, |
| 118 | + "attention_mask": attention_mask, |
| 119 | + } |
| 120 | + |
| 121 | + def __getitem__(self, idx) -> Dict[str, torch.Tensor]: |
| 122 | + return self.preprocessing(self.data[idx]) |
| 123 | + |
| 124 | + |
| 125 | + |
| 126 | +class MySupervisedDataset(Dataset): |
| 127 | + """Dataset for supervised fine-tuning.""" |
| 128 | + |
| 129 | + def __init__( |
| 130 | + self, |
| 131 | + data_path, |
| 132 | + tokenizer, |
| 133 | + max_source_length, |
| 134 | + max_target_length, |
| 135 | + max_seq_length |
| 136 | + ): |
| 137 | + super(MySupervisedDataset, self).__init__() |
| 138 | + self.data = self.load_data(data_path) |
| 139 | + self.tokenizer = tokenizer |
| 140 | + self.max_source_length = max_source_length |
| 141 | + self.max_target_length = max_target_length |
| 142 | + self.max_seq_length = max_seq_length |
| 143 | + self.ignore_index = -100 |
| 144 | + item = self.preprocessing(self.data[1]) |
| 145 | + print("input:", self.tokenizer.decode(item["input_ids"])) |
| 146 | + labels = [] |
| 147 | + for id_ in item["labels"]: |
| 148 | + if id_ == -100: |
| 149 | + continue |
| 150 | + labels.append(id_) |
| 151 | + print("label:", self.tokenizer.decode(labels)) |
| 152 | + |
| 153 | + def load_data(self,data_path): |
| 154 | + D = [] |
| 155 | + with open(data_path,'r',encoding='utf-8') as f: |
| 156 | + for line in f : |
| 157 | + line = json.loads(line) |
| 158 | + D.append(line) |
| 159 | + return D |
| 160 | + |
| 161 | + def __len__(self): |
| 162 | + return len(self.data) |
| 163 | + |
| 164 | + def preprocessing(self, example): |
| 165 | + input_ids = [] |
| 166 | + labels = [] |
| 167 | + |
| 168 | + prompt, answer = example['instruction'], example['output'] |
| 169 | + |
| 170 | + a_ids = self.tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True, |
| 171 | + max_length=self.max_source_length) |
| 172 | + b_ids = self.tokenizer.encode(text=answer, add_special_tokens=False, truncation=True, |
| 173 | + max_length=self.max_target_length) |
| 174 | + |
| 175 | + context_length = len(a_ids) |
| 176 | + input_ids = a_ids + b_ids + [self.tokenizer.eos_token_id] |
| 177 | + labels = [self.tokenizer.pad_token_id] * context_length + b_ids + [self.tokenizer.eos_token_id] |
| 178 | + |
| 179 | + pad_len = self.max_seq_length - len(input_ids) |
| 180 | + input_ids = input_ids + [self.tokenizer.pad_token_id] * pad_len |
| 181 | + labels = labels + [self.tokenizer.pad_token_id] * pad_len |
| 182 | + labels = [(l if l != self.tokenizer.pad_token_id else -100) for l in labels] |
| 183 | + |
| 184 | + input_ids = torch.LongTensor(input_ids) |
| 185 | + labels = torch.LongTensor(labels) |
| 186 | + attention_mask = input_ids.ne(self.tokenizer.pad_token_id) |
| 187 | + return { |
| 188 | + "input_ids": input_ids, |
| 189 | + "labels": labels, |
| 190 | + "attention_mask": attention_mask, |
| 191 | + } |
| 192 | + |
| 193 | + |
| 194 | + def __getitem__(self, idx) -> Dict[str, torch.Tensor]: |
| 195 | + return self.preprocessing(self.data[idx]) |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | + |
| 202 | + |
| 203 | +def train(): |
| 204 | + parser = transformers.HfArgumentParser( |
| 205 | + (ModelArguments, DataArguments, TrainingArguments) |
| 206 | + ) |
| 207 | + model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
| 208 | + |
| 209 | + model = transformers.AutoModelForCausalLM.from_pretrained( |
| 210 | + model_args.model_name_or_path, |
| 211 | + trust_remote_code=True, |
| 212 | + cache_dir=training_args.cache_dir, |
| 213 | + ).half() |
| 214 | + |
| 215 | + tokenizer = transformers.AutoTokenizer.from_pretrained( |
| 216 | + model_args.model_name_or_path, |
| 217 | + use_fast=False, |
| 218 | + trust_remote_code=True, |
| 219 | + model_max_length=training_args.model_max_length, |
| 220 | + cache_dir=training_args.cache_dir, |
| 221 | + ) |
| 222 | + if training_args.use_lora: |
| 223 | + from peft import LoraConfig, TaskType, get_peft_model |
| 224 | + |
| 225 | + peft_config = LoraConfig( |
| 226 | + task_type=TaskType.CAUSAL_LM, |
| 227 | + target_modules=["W_pack"], |
| 228 | + inference_mode=False, |
| 229 | + r=8, |
| 230 | + lora_alpha=32, |
| 231 | + lora_dropout=0.1, |
| 232 | + ) |
| 233 | + model.enable_input_require_grads() |
| 234 | + model = get_peft_model(model, peft_config) |
| 235 | + model.print_trainable_parameters() |
| 236 | + |
| 237 | + dataset = MySupervisedDataset( |
| 238 | + data_args.data_path, tokenizer, data_args.max_source_length,data_args.max_target_length,training_args.model_max_length |
| 239 | + ) |
| 240 | + |
| 241 | + trainer = transformers.Trainer( |
| 242 | + model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer |
| 243 | + ) |
| 244 | + |
| 245 | + trainer.train() |
| 246 | + trainer.save_state() |
| 247 | + trainer.save_model(output_dir=training_args.output_dir) |
| 248 | + |
| 249 | + |
| 250 | +if __name__ == "__main__": |
| 251 | + train() |
| 252 | + |
0 commit comments