-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLVBR_MinimalModel.m
476 lines (402 loc) · 15.7 KB
/
LVBR_MinimalModel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
% LV Corticothalamic Model of Visual Rivalry
% Christopher Whyte
rng('shuffle')
close all; clear
%% Parameters
%----- simulation length
sim_time = 20000;
%----- number of neurons
n_e = 90; % excitatory LV cortical neurons
n_i = n_e; % inhibitory LV cortical interneurons
n_th = 10; % non-specific matrix thalamus neurons
%----- connectivity
% E/I ring
e_e = 3.25; e_i = 1; i_e = 4.5;
sd_e_e = .5; sd_e_i = 2; sd_i_e = 2;
J_e_e = zeros(n_e,n_e); J_e_i = zeros(n_e,n_e); J_i_e = zeros(n_e,n_e);
% Cortical ring coupling
theta = linspace(0,2*pi,n_e); % location on ring
for j = 1:n_e
for k = 1:n_e
% euclidean distance in coordinates of unit circle
dist = sqrt(((cos(theta(j)) - cos(theta(k)))^2 + (sin(theta(j)) - sin(theta(k)))^2));
J_e_e(j,k) = e_e*exp(-.5*(dist./sd_e_e).^2)./(sd_e_e*sqrt(2*pi));
J_e_i(j,k) = e_i*exp(-.5*(dist./sd_e_i).^2)./(sd_e_i*sqrt(2*pi));
J_i_e(j,k) = i_e*exp(-.5*(dist./sd_i_e).^2)./(sd_i_e*sqrt(2*pi));
end
end
% ring -> th
e_th = 4;
J_e_th = zeros(n_th,n_e);
pocket_size = 9; counter = 1;
for j = 1:n_th
J_e_th(j,counter:counter+pocket_size-1) = e_th;
counter = counter + pocket_size;
end
% ring <- th
th_d = 1;
J_th_d = zeros(n_th,n_e);
pocket_size = 9; counter = 1;
for j = 1:n_th
J_th_d(j,counter:counter+pocket_size-1) = th_d;
counter = counter + pocket_size;
end
%----- neuron params
% C = capicitance
% v_r = rest potential
% v_th = threshold
% v_peak = spike cut off
% k = membrane potential time constant
% a = adaptation time constant
% b = sensitivity to subthreshold oscillations
% c = voltage reset
% d = adaptation reset
% L5b dendrite params
vd_peak = 20;
Cd = 100; vd_r = -50; vd_t = -50; kd = 1;
ad = .8; bd = 15; cd = -10; dd = 500;
% L5b soma params
ve_peak = 50;
Ce = 150; ve_r = -75; ve_t = -45; ke = 1.2;
ae = 0.01; be = 5;
ce = -66*ones(n_e,sim_time); burst_c_reset = -56;
de = 260*ones(n_e,sim_time); burst_d_reset = 130;
% basket cell params
vi_peak = 25;
Ci = 20; vi_r = -55; vi_t = -40; ki = 1;
ai = 0.15; bi = 8; ci = -55; di = 200;
% matrix thalamus params
vth_peak = 35;
C_th = 200; vth_r = -60; vth_t = -50; kth = 1.6;
ath = 0.01; bth = 15; cth = -60; dth = 10;
%----- synapse params
% reverse potentials
E_exc = 0; E_inh = -75; E_adapt = -80;
% adaptation current
tau_decay_adapt = 2000; delta_adapt = 0.045;
% NMDA
beta = 1/(3.57); alpha = 0.062; Mg = 1.2;
tau_rise_NMDA = 10; tau_decay_NMDA = 75;
NMDA_window = 3000;
% AMPA
tau_rise_AMPA = 1; tau_decay_AMPA = 8;
AMPA_window = 500;
% GABAa
tau_rise_GABAa = 1; tau_decay_GABAa = 6;
GABAa_window = 500;
%----- input into ring
% poisson process drive to soma
fr_L = 475; % L firing rate in hertz
fr_R = 475; % R firing rate in hertz
tsim = sim_time/1000; % simulation length (seconds)
dt = 1/1000; % time step
nbins = floor(tsim/dt); % time bins
spikemat_L = (rand(1,nbins)<fr_L*dt); % left eye spikes
spikemat_R = (rand(1,nbins)<fr_R*dt); % right eye spikes
% FF synaptic input (convolution of exponential synapses with spike train)
synapse = @(syn_window,tau_rise,tau_decay,spikes) conv(spikes,(1-exp(-(1:syn_window)./tau_rise)).*exp(-(1:syn_window)./tau_decay));
% left eye
g_syn_AMPA_L = synapse(sim_time, tau_rise_AMPA, tau_decay_AMPA,spikemat_L); g_syn_AMPA_L = g_syn_AMPA_L(1:sim_time);
g_syn_NMDA_L = synapse(sim_time, tau_rise_NMDA, tau_decay_NMDA,spikemat_L); g_syn_NMDA_L = g_syn_NMDA_L(1:sim_time);
% right eye
g_syn_AMPA_R = synapse(sim_time, tau_rise_AMPA, tau_decay_AMPA,spikemat_R); g_syn_AMPA_R = g_syn_AMPA_R(1:sim_time);
g_syn_NMDA_R = synapse(sim_time, tau_rise_NMDA, tau_decay_NMDA,spikemat_R); g_syn_NMDA_R = g_syn_NMDA_R(1:sim_time);
NL = 23; NR = NL+.5*n_e; sd = 10;
I_ext_const = zeros(n_e,1);
I_ext_NMDA = zeros(n_e,sim_time);
I_ext_AMPA= zeros(n_e,sim_time);
for n = 1:n_e
I_ext_const(n,1) = 200.*(exp(-((n-NL)/sd).^2) + exp(-((n-NR)/sd).^2));
I_ext_NMDA(n,:) = exp(-((n-NL)/sd).^2).*g_syn_NMDA_L + exp(-((n-NR)/sd).^2).*g_syn_NMDA_R;
I_ext_AMPA(n,:) = exp(-((n-NL)/sd).^2).*g_syn_AMPA_L + exp(-((n-NR)/sd).^2).*g_syn_AMPA_R;
end
%% Model Lesions/Stimulation
Baclofen = zeros(n_e,1);
% Baclofen(1:45,:) = Baclofen(1:45,:) + 100;
% Baclofen(1:45,:) = Baclofen(1:45,:) - 100;
%% Initialise
%----- Initialise state variable matrices
vd = zeros(n_e,sim_time); ud = zeros(n_e,sim_time);
ve = zeros(n_e,sim_time); ue = zeros(n_e,sim_time);
vi = zeros(n_i,sim_time); ui = zeros(n_i,sim_time);
vth = zeros(n_th,sim_time); uth = zeros(n_th,sim_time);
%----- Initialise synapse matrices
g_syn_e_e_NMDA = zeros(n_e,sim_time);
g_syn_e_e_AMPA = zeros(n_e,sim_time);
g_syn_e_i_AMPA = zeros(n_i,sim_time);
g_syn_e_i_NMDA = zeros(n_i,sim_time);
g_syn_e_th_AMPA = zeros(n_th,sim_time);
g_syn_i_e_GABAa = zeros(n_e,sim_time);
g_syn_th_d_NMDA = zeros(n_e,sim_time);
g_syn_th_d_AMPA = zeros(n_e,sim_time);
g_syn_adapt = zeros(n_e,sim_time);
%----- Initial conditions
vd(:,1) = vd_r;
ve(:,1) = ve_r;
vi(:,1) = vi_r;
vth(:,1) = vth_r;
%----- initialise spike storage containers
firings_d = [];
firings_e = []; tf_e = zeros(n_e,1);
firings_i = []; tf_i = zeros(n_i,1);
firings_th = []; tf_th = zeros(n_th,1);
%% Simulation loop
disp('Simulation start'); tic
for t = 1:(sim_time-1)
% display sim time
if mod(t,1000)==0
disp(['t = ',num2str(t)]);
end
%---------- L5b apical dendrites
% conductance
Mg_gate = (1./(1 + Mg.*beta.*exp(-alpha*vd(:,t))));
g_syn_tot = Mg_gate.*g_syn_th_d_NMDA(:,t) + g_syn_th_d_AMPA(:,t) + eps; % total condunctance
E_tot = (Mg_gate.*g_syn_th_d_NMDA(:,t).*E_exc + g_syn_th_d_AMPA(:,t).*E_exc )./g_syn_tot; % total reverse potential
% membrane potential
vd(:,t+1) = (vd(:,t) + (kd*(vd(:,t) - vd_r).*(vd(:,t) - vd_t) - ud(:,t) + 20*(ve(:,t) - vd(:,t)) + Baclofen + g_syn_tot.*E_tot)./Cd)...
./(1 + g_syn_tot./Cd);
fired=vd(:,t+1)>=vd_peak;
if any(fired==1)
firings_d = [firings_d; t+0*find(fired==1), find(fired==1)];
% interpolate spike time to find tau
t_peak = t + (vd_peak - vd(fired,t))./(vd(fired,t+1) - vd(fired,t));
tau = t_peak - t;
% update adapatation variable with new tau
ud(fired,t+1) = ud(fired,t) + tau.*ad.*(bd.*(vd(fired,t) - vd_r) - ud(fired,t));
% update adaptation variable
ud(fired,t+1) = ud(fired,t+1) + dd;
% pad spike amplitude
vd(fired,t) = vd_peak;
vd(fired,t+1) = cd;
% reset conditions on soma conditional on apical spike
ce(fired,t:t+25) = burst_c_reset; de(fired,t:t+25) = burst_d_reset;
end
ud(~fired,t+1) = ud(~fired,t)+ad*(bd*(vd(~fired,t)-vd_r)-ud(~fired,t));
%---------- L5b soma
% conductance
Mg_gate = (1./(1 + Mg.*beta.*exp(-alpha*ve(:,t))));
g_syn_tot = g_syn_e_e_AMPA(:,t) + Mg_gate.*min(g_syn_e_e_NMDA(:,t),130) + g_syn_i_e_GABAa(:,t) + Mg_gate.*I_ext_NMDA(:,t) + I_ext_AMPA(:,t) + g_syn_adapt(:,t) + eps; % total condunctance
E_tot = (g_syn_e_e_AMPA(:,t).*E_exc + Mg_gate.*min(g_syn_e_e_NMDA(:,t),130).*E_exc + g_syn_i_e_GABAa(:,t).*E_inh + Mg_gate.*I_ext_NMDA(:,t).*E_exc + I_ext_AMPA(:,t).*E_exc + g_syn_adapt(:,t).*E_adapt)./g_syn_tot; % total reverse potential
% membrane potential
ve(:,t+1) = (ve(:,t) + (ke.*(ve(:,t) - ve_r).*(ve(:,t) - ve_t) - ue(:,t) + I_ext_const + g_syn_tot.*E_tot)./Ce)...
./(1 + (g_syn_tot./Ce));
g_syn_adapt(:,t+1) = g_syn_adapt(:,t) + (-g_syn_adapt(:,t)./tau_decay_adapt);
% find spikes
fired=ve(:,t+1)>=ve_peak;
firedind = find(ve(:,t+1)>=ve_peak);
if any(fired==1)
% store spikes
firings_e = [firings_e; t+0*firedind, firedind];
% interpolate spike time to find tau
t_peak = t + (ve_peak - ve(fired,t))./(ve(fired,t+1) - ve(fired,t));
tau = t_peak - t;
% update adapatation variable with new tau
ue(fired,t+1) = ue(fired,t) + tau.*ae.*(be.*(ve(fired,t)-ve_r) - ue(fired,t));
% update adaptation variable
ue(fired,t+1) = ue(fired,t+1) + de(fired,t);
% pad spike amplitude
ve(fired,t) = ve_peak;
ve(fired,t+1) = ce(fired,t);
% spike times
tf_e(fired) = t;
% adaptation current
g_syn_adapt(fired,t+1) = g_syn_adapt(fired,t+1) + delta_adapt;
% NMDA conductance window
if t > (sim_time - NMDA_window)
NMDA_idx = sim_time - t;
else
NMDA_idx = NMDA_window;
end
tdash_NMDA=(t+1:(t+NMDA_idx));
% L5b -> L5b: NMDA
g_syn_e_e_NMDA(:,t+1:(t+NMDA_idx)) = g_syn_e_e_NMDA(:,t+1:(t+NMDA_idx)) + J_e_e*((1-exp(-(tdash_NMDA-tf_e)./tau_rise_NMDA)).*exp(-(tdash_NMDA-tf_e)./tau_decay_NMDA).*fired);
% L5b -> basket: NMDA
g_syn_e_i_NMDA(:,t+1:(t+NMDA_idx)) = g_syn_e_i_NMDA(:,t+1:(t+NMDA_idx)) + J_e_i*((1-exp(-(tdash_NMDA-tf_e)./tau_rise_NMDA)).*exp(-(tdash_NMDA-tf_e)./tau_decay_NMDA).*fired);
% AMPA conductance window
if t > (sim_time - AMPA_window)
AMPA_idx = sim_time - t;
else
AMPA_idx = AMPA_window;
end
tdash_AMPA=(t+1:(t+AMPA_idx));
% L5b -> L5b: AMPA
g_syn_e_e_AMPA(:,t+1:(t+AMPA_idx)) = g_syn_e_e_AMPA(:,t+1:(t+AMPA_idx)) + J_e_e*((1-exp(-(tdash_AMPA-tf_e)./tau_rise_AMPA)).*exp(-(tdash_AMPA-tf_e)./tau_decay_AMPA).*fired);
% L5b -> basket: AMPA
g_syn_e_i_AMPA(:,t+1:(t+AMPA_idx)) = g_syn_e_i_AMPA(:,t+1:(t+AMPA_idx)) + J_e_i*((1-exp(-(tdash_AMPA-tf_e)./tau_rise_AMPA)).*exp(-(tdash_AMPA-tf_e)./tau_decay_AMPA).*fired);
% L5b -> thal
g_syn_e_th_AMPA(:,t+1:(t+AMPA_idx)) = g_syn_e_th_AMPA(:,t+1:(t+AMPA_idx)) + J_e_th*((1-exp(-(tdash_AMPA-tf_e)./tau_rise_AMPA)).*exp(-(tdash_AMPA-tf_e)./tau_decay_AMPA).*fired);
end
ue(~fired,t+1) = ue(~fired,t) + ae.*(be.*(ve(~fired,t)-ve_r) - ue(~fired,t));
%---------- basket cell
% conductance
Mg_gate = (1./(1 + Mg.*beta.*exp(-alpha*vi(:,t))));
g_syn_tot = Mg_gate.*g_syn_e_i_NMDA(:,t) + g_syn_e_i_AMPA(:,t) + eps; % total condunctance
E_tot = (Mg_gate.*g_syn_e_i_NMDA(:,t).*E_exc + g_syn_e_i_AMPA(:,t).*E_exc)./g_syn_tot; % total reverse potential
% membrane potential
vi(:,t+1) = (vi(:,t) + (ki.*(vi(:,t) - vi_r).*(vi(:,t) - vi_t) - ui(:,t) + g_syn_tot.*E_tot)./Ci)...
./(1 + (g_syn_tot./Ci));
% find spikes
fired=vi(:,t+1)>=vi_peak;
firedind = find(vi(:,t+1)>=vi_peak);
if any(fired==1)
% store spikes
firings_i = [firings_i; t+0*firedind, firedind];
% interpolate spike time to find tau
t_peak = t + (vi_peak - vi(fired,t))./(vi(fired,t+1) - vi(fired,t));
tau = t_peak - t;
% update adapatation variable with new tau
ui(fired,t+1) = ui(fired,t) + tau.*ai.*(bi.*(vi(fired,t) - vi_r) - ui(fired,t));
% update adaptation variable
ui(fired,t+1) = ui(fired,t+1) + di;
% pad spike amplitude
vi(fired,t) = vi_peak;
vi(fired,t+1) = ci;
% spike times
tf_i(fired) = t;
% GABAa conductance window
if t > (sim_time - GABAa_window)
GABAa_idx = sim_time - t;
else
GABAa_idx = GABAa_window;
end
tdash_GABAa=(t+1:(t+GABAa_idx));
% basket -> L5b
g_syn_i_e_GABAa(:,t+1:(t+GABAa_idx)) = g_syn_i_e_GABAa(:,t+1:(t+GABAa_idx)) + J_i_e*((1-exp(-(tdash_GABAa-tf_i)./tau_rise_GABAa)).*exp(-(tdash_GABAa-tf_i)./tau_decay_GABAa).*fired);
end
ui(~fired,t+1) = ui(~fired,t) + ai.*(bi.*(vi(~fired,t) - vi_r) - ui(~fired,t));
%---------- matrix thamalus population
% conductance
g_syn_tot = g_syn_e_th_AMPA(:,t) + eps; % total condunctance
E_tot = (g_syn_e_th_AMPA(:,t).*E_exc)./g_syn_tot; % total reverse potential
% membrane potential
vth(:,t+1) = (vth(:,t) + (kth*(vth(:,t) - vth_r).*(vth(:,t) - vth_t) - uth(:,t) + g_syn_tot.*E_tot)./C_th)...
./(1 + g_syn_tot./C_th);
% find spikes
fired=vth(:,t+1)>=vth_peak+0.1.*uth(t);
if any(fired==1)
firings_th = [firings_th; t+0*find(fired==1), find(fired==1)];
% interpolate spike time to find tauth
t_peak = t + (vth_peak - vth(fired,t))./(vth(fired,t+1) - vth(fired,t));
tau = t_peak - t;
% update adapatation vthariable with new tau
uth(fired,t+1) = uth(fired,t) + tau.*ath.*(bth.*(vth(fired,t) - vth_r) - uth(fired,t));
% update adaptation vthariable
uth(fired,t+1) = uth(fired,t+1) + dth;
% pad spike amplituthde
vth(fired,t) = vth_peak;
% reset membrane potential
vth(fired,t+1) = cth - 0.1.*uth(fired,t);
% spike times
tf_th(fired) = t;
% NMDA conductance window
if t > (sim_time - NMDA_window)
NMDA_idx = sim_time - t;
else
NMDA_idx = NMDA_window;
end
tdash_NMDA=(t+1:(t+NMDA_idx));
% thal -> dend NMDA
g_syn_th_d_NMDA(:,t+1:(t+NMDA_idx)) = g_syn_th_d_NMDA(:,t+1:(t+NMDA_idx)) + J_th_d'*((1-exp(-(tdash_NMDA-tf_th)/tau_rise_NMDA)).*exp(-(tdash_NMDA-tf_th)/tau_decay_NMDA).*fired);
% AMPA conductance window
if t > (sim_time - AMPA_window)
AMPA_idx = sim_time - t;
else
AMPA_idx = AMPA_window;
end
tdash_AMPA=(t+1:(t+AMPA_idx));
% thal -> dend AMPA
g_syn_th_d_AMPA(:,t+1:(t+AMPA_idx)) = g_syn_th_d_AMPA(:,t+1:(t+AMPA_idx)) + J_th_d'*((1-exp(-(tdash_AMPA-tf_th)/tau_rise_AMPA)).*exp(-(tdash_AMPA-tf_th)/tau_decay_AMPA).*fired);
end
subthreshidx=vth(:,t+1) <= -65;
if any(subthreshidx==1)
uth(subthreshidx,t+1) = uth(subthreshidx,t) - ath*uth(subthreshidx,t);
end
fired_subthresh = fired >= 1 | subthreshidx >= 1;
uth(~fired_subthresh,t+1) = uth(~fired_subthresh,t) + ath*(bth*(vth(~fired_subthresh,t)-vth_r) - uth(~fired_subthresh,t));
end
disp('Simulation end'); toc
%% basic figures
time = linspace(1,sim_time/1000,sim_time); % time in seconds
neuronidx = NL;
thalidx = round(neuronidx/9);
figure(1)
hold on
plot(time,ve(neuronidx,:),'k')
ylabel('Neuron index')
ylabel('Time (s)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
title('L5 Soma')
figure(2)
plot(time,vi(neuronidx,:),'k')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
title('Basket Cell')
figure(3)
plot(time,vth(thalidx,:),'k')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
title('Thalamus')
figure(4)
hold on
title('Raster: L5 Soma')
plot(firings_e(:,1)/1000,firings_e(:,2),'.','Color', [220, 77 101]/255);
xlim([0,sim_time/1000])
ylim([0,n_e])
ylabel('Neuron index')
xlabel('Time (s)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
figure(5)
hold on
title('Raster: Basket Cell')
plot(firings_i(:,1)/1000,firings_i(:,2),'k.');
xlim([0,sim_time/1000])
ylim([0,n_i])
ylabel('Neuron index')
xlabel('Time (s)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
figure(6)
hold on
title('Raster: Thal')
plot(firings_th(:,1)/1000,firings_th(:,2),'k.');
xlim([0,sim_time/1000])
ylim([0,n_th])
ylabel('Neuron index')
xlabel('Time (s)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
figure(7)
plot(time,g_syn_adapt(neuronidx,:),'k')
title('Adaptation')
xlabel('Time (s)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')
%% Average firing rate
firings = firings_e;
spikesLT = firings(1<= firings(:,2) & firings(:,2)<=45,1);
spikesRT = firings(45<=firings(:,2) & firings(:,2)<=90,1);
tstep = 1:1:sim_time;
rateL = histcounts(spikesLT,tstep)/45*1000; %count spikes in bin 1ms resol
rateR = histcounts(spikesRT,tstep)/45*1000;
SmoothGaussWindow = @(x,n) conv(x,gausswin(n)./sum(gausswin(n)),'same');
rateL = SmoothGaussWindow(rateL,250);
rateR = SmoothGaussWindow(rateR,250);
figure(8)
hold on
plot(rateL,'k', 'linewidth', 2)
plot(rateR,'linewidth', 2,'Color', [220, 77 101]/255)
ylim([0,35])
ylabel('Firing rate (Hz)')
xlabel('Time (ms)')
ax = gca;
ax.FontSize = 30;
set(gca, 'FontName', 'Times')