diff --git a/Jenkinsfile b/Jenkinsfile index 2f4406856288..b0bc2626266a 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -205,9 +205,9 @@ del /Q *.7z // Python unittest for CPU def python_ut(docker_type) { timeout(time: max_time, unit: 'MINUTES') { - sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests --with-timer --verbose tests/python/unittest" + sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests-2.7 --with-timer --verbose tests/python/unittest" sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests-3.4 --with-timer --verbose tests/python/unittest" - sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests --with-timer --verbose tests/python/train" + sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests-2.7 --with-timer --verbose tests/python/train" } } @@ -215,7 +215,7 @@ def python_ut(docker_type) { // both CPU and GPU def python_gpu_ut(docker_type) { timeout(time: max_time, unit: 'MINUTES') { - sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests --with-timer --verbose tests/python/gpu" + sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests-2.7 --with-timer --verbose tests/python/gpu" sh "${docker_run} ${docker_type} PYTHONPATH=./python/ nosetests-3.4 --with-timer --verbose tests/python/gpu" } } diff --git a/Makefile b/Makefile index c71cb1398963..e9b3e25b30ec 100644 --- a/Makefile +++ b/Makefile @@ -44,8 +44,9 @@ ifeq ($(DEV), 1) endif # CFLAGS for debug +# FIXME(haibin) temporarily turn on -DDMLC_LOG_FATAL_THROW for debug ifeq ($(DEBUG), 1) - CFLAGS += -g -O0 + CFLAGS += -g -O0 -DDMLC_LOG_FATAL_THROW=1 else CFLAGS += -O3 -DNDEBUG=1 endif diff --git a/dmlc-core b/dmlc-core index a6c5701219e6..fc66c6241f02 160000 --- a/dmlc-core +++ b/dmlc-core @@ -1 +1 @@ -Subproject commit a6c5701219e635fea808d264aefc5b03c3aec314 +Subproject commit fc66c6241f0278c619ed3c25b895bda0e7de99fd diff --git a/include/mxnet/c_api.h b/include/mxnet/c_api.h index 1b112abe2ba9..c8c8afd7522b 100644 --- a/include/mxnet/c_api.h +++ b/include/mxnet/c_api.h @@ -244,6 +244,38 @@ MXNET_DLL int MXNDArrayCreateEx(const mx_uint *shape, int delay_alloc, int dtype, NDArrayHandle *out); + + +/*! + * \brief create an empty sparse NDArray with specified shape and data type + * \param storage_type the storage type of the ndarray + * \param shape the pointer to the shape + * \param ndim the dimension of the shape + * \param dev_type device type, specify device we want to take + * \param dev_id the device id of the specific device + * \param delay_alloc whether to delay allocation until + * the narray is first mutated + * \param dtype data type of created array + * \param num_aux the number of aux data to support this ndarray + * \param aux_type data type of the aux data for the created array + * \param aux_ndims the dimension of the shapes of aux data + * \param aux_shape the shapes of aux data + * \param out the returning handle + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXNDArrayCreateSparseEx(int storage_type, + const mx_uint *shape, + mx_uint ndim, + int dev_type, + int dev_id, + int delay_alloc, + int dtype, + mx_uint num_aux, + int *aux_type, + mx_uint *aux_ndims, + const mx_uint *aux_shape, + NDArrayHandle *out); + /*! * \brief create a NDArray handle that is loaded from raw bytes. * \param buf the head of the raw bytes @@ -356,6 +388,19 @@ MXNET_DLL int MXNDArraySlice(NDArrayHandle handle, mx_uint slice_begin, mx_uint slice_end, NDArrayHandle *out); + +/*! + * \brief Slice the NDArray with non-default storage along axis 0. + * \param handle the handle to the NDArray + * \param slice_begin The beginning index of slice + * \param slice_end The ending index of slice + * \param out The NDArrayHandle of sliced NDArray + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXNDArraySliceEx(NDArrayHandle handle, + mx_uint slice_begin, + mx_uint slice_end, + NDArrayHandle out); /*! * \brief Index the NDArray along axis 0. * \param handle the handle to the NDArray @@ -366,6 +411,13 @@ MXNET_DLL int MXNDArraySlice(NDArrayHandle handle, MXNET_DLL int MXNDArrayAt(NDArrayHandle handle, mx_uint idx, NDArrayHandle *out); + +/*! + * \brief get the storage type of the array + */ +MXNET_DLL int MXNDArrayGetStorageType(NDArrayHandle handle, + int *out_storage_type); + /*! * \brief Reshape the NDArray. * \param handle the handle to the narray @@ -404,6 +456,26 @@ MXNET_DLL int MXNDArrayGetData(NDArrayHandle handle, */ MXNET_DLL int MXNDArrayGetDType(NDArrayHandle handle, int *out_dtype); + +/*! + * \brief get the type of the ith aux data in NDArray + * \param handle the handle to the narray + * \param i the index of the aux data + * \param out_type pointer holder to get type of aux data + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXNDArrayGetAuxType(NDArrayHandle handle, + mx_uint i, + int *out_type); + +// Get the ith aux data blob wrapped in an NDArray +MXNET_DLL int MXNDArrayGetAuxNDArray(NDArrayHandle handle, + mx_uint i, + NDArrayHandle *out); + +// Get the data blob wrapped in an NDArray +MXNET_DLL int MXNDArrayGetDataNDArray(NDArrayHandle handle, + NDArrayHandle *out); /*! * \brief get the context of the NDArray * \param handle the handle to the narray @@ -935,6 +1007,25 @@ MXNET_DLL int MXSymbolInferType(SymbolHandle sym, mx_uint *aux_type_size, const int **aux_type_data, int *complete); + + + + +/*! + * \brief infer storage type of unknown input types given the known one. + */ +MXNET_DLL int MXSymbolInferStorageType(SymbolHandle sym, + mx_uint num_args, + const char** keys, + const int *arg_storage_type_data, + mx_uint *in_storage_type_size, + const int **in_storage_type_data, + mx_uint *out_storage_type_size, + const int **out_storage_type_data, + mx_uint *aux_storage_type_size, + const int **aux_storage_type_data, + int *complete); + //-------------------------------------------- // Part 4: Executor interface //-------------------------------------------- @@ -1081,6 +1172,39 @@ MXNET_DLL int MXExecutorBindEX(SymbolHandle symbol_handle, NDArrayHandle *aux_states, ExecutorHandle shared_exec, ExecutorHandle *out); + +MXNET_DLL int MXExecutorSimpleBind(SymbolHandle symbol_handle, + int dev_type, + int dev_id, + const mx_uint num_g2c_keys, + const char** g2c_keys, + const int* g2c_dev_types, + const int* g2c_dev_ids, + const mx_uint provided_grad_req_list_len, + const char** provided_grad_req_names, + const char** provided_grad_req_types, + const mx_uint num_provided_arg_shapes, + const char** provided_arg_shape_names, + const mx_uint* provided_arg_shape_data, + const mx_uint* provided_arg_shape_idx, + const mx_uint num_provided_arg_dtypes, + const char** provided_arg_dtype_names, + const int* provided_arg_dtypes, + const mx_uint num_provided_arg_stypes, + const char** provided_arg_stype_names, + const int* provided_arg_stypes, + const mx_uint num_shared_arg_names, + const char** shared_arg_name_list, + mx_uint* shared_buffer_len, + const char*** shared_buffer_name_list, + NDArrayHandle** shared_buffer_handle_list, + mx_uint* num_in_args, + NDArrayHandle** in_args, + NDArrayHandle** arg_grads, + mx_uint* num_aux_states, + NDArrayHandle** aux_states, + ExecutorHandle shared_exec_handle, + ExecutorHandle* out); /*! * \brief set a call back to notify the completion of operation */ diff --git a/include/mxnet/executor.h b/include/mxnet/executor.h index cf71666826ab..5856b87cf859 100644 --- a/include/mxnet/executor.h +++ b/include/mxnet/executor.h @@ -69,6 +69,21 @@ class Executor { * \return array of outputs in the executor. */ virtual const std::vector &outputs() const = 0; + /*! + * \brief get input argument map, key is arg name, value is arg's NDArray. + * \return input argument map in the executor. + */ + virtual const std::unordered_map& in_arg_map() const = 0; + /*! + * \brief get input argument graident map, key is arg name, value is gradient's NDArray. + * \return input argument gradient map in the executor. + */ + virtual const std::unordered_map& arg_grad_map() const = 0; + /*! + * \brief get aux state map, key is arg name, value is aux state's NDArray. + * \return aux state map in the executor. + */ + virtual const std::unordered_map& aux_state_map() const = 0; /*! * \brief Create an operator by bind symbol with context and arguments. * If user do not want to compute the gradients of i-th argument, grad_req_type[i] can be kNullOp. @@ -91,6 +106,24 @@ class Executor { const std::vector &grad_req_type, const std::vector &aux_states, Executor* shared_exec = NULL); + + static Executor* SimpleBind(nnvm::Symbol symbol, + const Context& default_ctx, + const std::map& group2ctx, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, + const std::vector& grad_req_types, + const std::unordered_set& param_names, + std::vector* in_args, + std::vector* arg_grads, + std::vector* aux_states, + std::unordered_map* + shared_data_arrays = nullptr, + Executor* shared_exec = nullptr); /*! * \brief the prototype of user-defined monitor callback */ diff --git a/include/mxnet/ndarray.h b/include/mxnet/ndarray.h index ea38909d07f1..d01352e795e4 100644 --- a/include/mxnet/ndarray.h +++ b/include/mxnet/ndarray.h @@ -28,8 +28,22 @@ #endif namespace mxnet { +// forward declarations +class NDArray; + +namespace op { +template +void FillZerosRspImpl(mshadow::Stream *s, NDArray *dst); + +template +void CastStorageComputeImpl(mshadow::Stream *s, const NDArray& input, const NDArray& output); +}; + +namespace ndarray { +template +void Copy(const TBlob &from, TBlob *to, Context from_ctx, Context to_ctx, RunContext ctx); +}; -// forward declaration namespace autograd { class AGNode; @@ -52,6 +66,27 @@ class AGNodeEntry { class AutogradRuntime; } // namespace autograd +// enum for storage types +#define CSR_IND_PTR_TYPE mshadow::kInt32 +#define CSR_IDX_DTYPE mshadow::kInt32 +#define ROW_SPARSE_IDX_TYPE mshadow::kInt32 +// FIXME int64_t is not available mshadow +namespace csr { +enum CSRAuxType {kIndPtr, kIdx}; +} + +namespace rowsparse { +enum RowSparseAuxType {kIdx}; +} + +enum NDArrayStorageType { + kUndefinedStorage = -1, // undefined storage + kDefaultStorage, // dense + kRowSparseStorage, // row sparse + kCSRStorage, // csr +}; + + /*! * \brief ndarray interface */ @@ -72,10 +107,55 @@ class NDArray { */ NDArray(const TShape &shape, Context ctx, bool delay_alloc = false, int dtype = mshadow::default_type_flag) - : ptr_(std::make_shared(shape.Size(), ctx, delay_alloc, dtype)), + : ptr_(std::make_shared(shape, ctx, delay_alloc, dtype)), shape_(shape), offset_(0), dtype_(dtype), entry_({nullptr, 0, 0}) { #if MKL_EXPERIMENTAL == 1 Mkl_mem_ = std::make_shared(); +#endif + } + /*! \brief constructor for NDArray with storage type + */ + NDArray(const NDArrayStorageType storage_type, const TShape &shape, Context ctx, + bool delay_alloc = true, int dtype = mshadow::default_type_flag, + std::vector aux_types = {}, std::vector aux_shapes = {}, + TShape storage_shape = TShape(mshadow::Shape1(0))) + : shape_(shape), offset_(0), dtype_(dtype), entry_({nullptr, 0, 0}) { + // Assign default aux types if not given + if (aux_types.size() == 0) { + if (storage_type == kRowSparseStorage) { + aux_types = {ROW_SPARSE_IDX_TYPE}; + } else if (storage_type == kCSRStorage) { + aux_types = {CSR_IND_PTR_TYPE, CSR_IDX_DTYPE}; + } else { + LOG(FATAL) << "Unknown storage type" << storage_type; + } + } + // Assign default shapes if not given + // unknown shapes are intialized as {0} such that Size() would return 0 + if (aux_shapes.size() == 0) { + if (storage_type == kRowSparseStorage) { + aux_shapes = {TShape(mshadow::Shape1(0))}; + } else if (storage_type == kCSRStorage) { + // aux shapes for indptr and indices + aux_shapes = {TShape(mshadow::Shape1(0)), TShape(mshadow::Shape1(0))}; + } else { + LOG(FATAL) << "Unknown storage type" << storage_type; + } + } + if (storage_shape.Size() == 0) { + if (storage_type == kRowSparseStorage) { + storage_shape = shape; + storage_shape[0] = aux_shapes[rowsparse::kIdx][0]; + } else if (storage_type == kCSRStorage) { + storage_shape = aux_shapes[csr::kIdx]; + } else { + LOG(FATAL) << "Unknown storage type" << storage_type; + } + } + ptr_ = std::make_shared(storage_type, storage_shape, ctx, delay_alloc, + dtype, aux_types, aux_shapes); +#if MKL_EXPERIMENTAL == 1 + Mkl_mem_ = std::make_shared(); #endif } /*! @@ -84,29 +164,108 @@ class NDArray { * make sure the memory region is available through out the life of NDArray * \param data the memory content of static data * \param dev_id the device id this tensor sits at + * \param shared_var the same var handle shared with others. + It will not be deleted during destruction. */ - NDArray(const TBlob &data, int dev_id) - : ptr_(std::make_shared(data, dev_id)), shape_(data.shape_), offset_(0), + NDArray(const TBlob &data, int dev_id, Engine::VarHandle shared_var = nullptr) + : ptr_(std::make_shared(data, dev_id, shared_var)), shape_(data.shape_), offset_(0), dtype_(data.type_flag_), entry_({nullptr, 0, 0}) { #if MKL_EXPERIMENTAL == 1 Mkl_mem_ = std::make_shared(); #endif } + /*! - * \return the shape of current NDArray + * \return the shape of current NDArray. */ inline const TShape &shape() const { return shape_; } + /*! + * \return the shape of underlying chunk which stores the NDArray values. + * For default storage, it is the same as shape(). For row-sparse storage, it is the shape of + * the tensor which stores the non-zero values. + */ + inline const TShape &storage_shape() const { + CHECK(ptr_ != nullptr); + return ptr_->storage_shape; + } + + /*! + * \brief For sparse operations, the storage shape is an estimated value + * in the beginning for allocating enough capacity for the final result. + * After the operation is done, the exact size of the shape is known + * and need to be reset using this function. For example, adding + * two CSRs with nnz1 and nnz2 as their numbers of non-zero values, respectively, + * would allocate the array of size nnz1+nnz2 first and get the final + * nnz that is smaller than nnz1+nnz2. Therefore, the storage shape's size + * needs to be shrunk from nnz1+nnz2 to nnz. + */ + inline void SetStorageShape(const TShape& sshape) { + CHECK(storage_type() != kDefaultStorage); + ptr_->storage_shape = sshape; + } + + /*! + * \return the shape of aux data at ith index. If it doesn't exist, return an empty one. + */ + inline const TShape aux_shape(size_t i) const { + CHECK(storage_type() != kDefaultStorage); + return ptr_->aux_shapes[i]; + } + + /*! + * \brief For a sparse operation on a csr matrix for example, + * the size of the column index array + * is an estimated value in the beginning for allocating enough capacity + * for the final result. After the operation is done, the exact size of + * the shape is known and need to be reset using this function. + */ + inline void SetAuxShape(size_t i, const TShape& shape) const { + ptr_->aux_shapes[i] = shape; + } + /*! * \return the data TBlob */ inline TBlob data() const { - CheckAndAlloc(); + CHECK(ptr_ != nullptr); TBlob res; - MSHADOW_TYPE_SWITCH(dtype_, DType, { - res = TBlob(static_cast(ptr_->shandle.dptr) - + offset_, shape_, ptr_->shandle.ctx.dev_mask()); + TShape shape = shape_; + auto stype = storage_type(); + if (stype == kDefaultStorage) CheckAndAlloc(); + MSHADOW_TYPE_SWITCH(dtype(), DType, { + auto dptr = static_cast(ptr_->shandle.dptr); + if (stype == kDefaultStorage) { + dptr += offset_; + } else if (stype == kCSRStorage || stype == kRowSparseStorage) { + shape = storage_shape(); + } else { + LOG(FATAL) << "unknown storage type " << stype; + } + res = TBlob(dptr, shape, ptr_->shandle.ctx.dev_mask(), dtype()); + }); +#if MKL_EXPERIMENTAL == 1 + res.Mkl_mem_ = Mkl_mem_; +#endif + return res; + } + /*! + * \return the aux TBlob + */ + inline TBlob aux_data(size_t i) const { + auto stype = storage_type(); + TBlob res; + auto shape = aux_shape(i); + auto type = aux_type(i); + MSHADOW_TYPE_SWITCH(type, DType, { + auto dptr = static_cast(ptr_->aux_handles[i].dptr); + if (stype == kRowSparseStorage || stype == kCSRStorage) { + CHECK_EQ(offset_, 0); + } else { + LOG(FATAL) << "Unexpected storage type"; + } + res = TBlob(dptr, shape, ptr_->aux_handles[i].ctx.dev_mask(), type); }); #if MKL_EXPERIMENTAL == 1 res.Mkl_mem_ = Mkl_mem_; @@ -117,6 +276,7 @@ class NDArray { * \return a chunk of raw data in TBlob */ inline TBlob raw_data(index_t offset, index_t length) const { + CHECK(storage_type() == kDefaultStorage); CheckAndAlloc(); TBlob res; TShape raw_shape(1); @@ -142,10 +302,30 @@ class NDArray { inline int dtype() const { return dtype_; } + inline int aux_type(size_t i) const { + CHECK(!is_none()); + return ptr_->aux_types[i]; + } + inline NDArrayStorageType storage_type() const { + if (is_none()) return kUndefinedStorage; + return ptr_->storage_type; + } /*! \return whether this ndarray is not initialized */ inline bool is_none() const { return ptr_.get() == nullptr; } + // returns true if a sparse ndarray's aux_data and storage are initialized + inline bool storage_initialized() const { + if (is_none()) return false; + auto stype = storage_type(); + CHECK_NE(stype, kDefaultStorage); + if (stype == kRowSparseStorage || stype == kCSRStorage) { + return aux_shape(0).Size() != 0; + } else { + LOG(FATAL) << "Unknown storage type"; + } + return true; + } /*! * \brief Block until all the pending write operations with respect * to current NDArray are finished, and read can be performed. @@ -279,17 +459,38 @@ class NDArray { void SyncCopyToCPU(void *data, size_t size) const; /*! * \brief Slice a NDArray - * \param begin begin index in first dim - * \param end end index in first dim + * \param begin begin index in first dim (inclusive) + * \param end end index in first dim (exclusive) * \return sliced NDArray */ NDArray Slice(index_t begin, index_t end) const; + + /*! + * \brief Slice a NDArray with non-default storage + * \param begin begin index in first dim (inclusive) + * \param end end index in first dim (exclusive) + * \return sliced NDArray + */ + void SliceEx(index_t begin, index_t end, NDArray *dst) const; /*! * \brief Index a NDArray * \param idx the index * \return idx-th sub array NDArray */ NDArray At(index_t idx) const; + // Wrap the tblob of aux data into an NDArray which shares the same variable with the + // current one. + inline const NDArray aux_ndarray(size_t i) const { + CHECK_NE(storage_type(), kDefaultStorage); + CHECK(i < ptr_->aux_shapes.size()); + return NDArray(aux_data(i), ctx().dev_id, var()); + } + // Wrap the tblob of data into an NDArray which shares the same variable with the + // current one. + inline const NDArray data_ndarray() const { + CHECK_NE(storage_type(), kDefaultStorage); + return NDArray(data(), ctx().dev_id, var()); + } /*! * \brief Create a NDArray that shares memory with current one * The new array must have smaller memory size than the current array. @@ -298,6 +499,7 @@ class NDArray { * \return NDArray in new shape and type. */ inline NDArray AsArray(const TShape &shape, int dtype) const { + CHECK_EQ(storage_type(), kDefaultStorage) << "Not implemented yet"; CHECK_GE(shape_.Size() * mshadow::mshadow_sizeof(dtype_), shape.Size() * mshadow::mshadow_sizeof(dtype)) << "NDArray.AsArray: target memory size is bigger"; @@ -323,8 +525,25 @@ class NDArray { * This is an internal function used by system that normal user should not use */ inline void CheckAndAlloc() const { + CHECK_EQ(storage_type(), kDefaultStorage); ptr_->CheckAndAlloc(); } + /* ! + * \brief Alloc memory for non-default storage + * aux_shape is only known at run time + */ + inline void CheckAndAlloc(const std::vector &aux_shapes) const { + CHECK_NE(storage_type(), kDefaultStorage); + ptr_->CheckAndAlloc(shape_, aux_shapes, dtype_); + } + inline void CheckAndAllocData(const TShape &storage_shape) const { + CHECK_NE(storage_type(), kDefaultStorage); + ptr_->CheckAndAllocData(storage_shape, dtype_); + } + inline void CheckAndAllocAuxData(size_t i, const TShape &aux_shape) const { + CHECK_NE(storage_type(), kDefaultStorage); + ptr_->CheckAndAllocAuxData(i, aux_shape); + } /*! * \brief Save list of narray into the Stream.x * \param fo The stream of output. @@ -347,43 +566,99 @@ class NDArray { private: friend class autograd::AutogradRuntime; /*! \brief the real data chunk that backs NDArray */ + // shandle is used to store the actual values in the NDArray + // aux_handles store the aux data(such as indices) if it's needed by non-default storage. struct Chunk { - /*! \brief storage handlefrom storage engine */ + /*! \brief storage handle from storage engine. + for non-default storage, shandle stores the data(value) array. + */ Storage::Handle shandle; + /*! \brief storage handles for aux data (e.g index) + for row_sparse, aux_handles[0] = indices + for csr, aux_handles[0] = indptr, aux_handles[1] = indices + */ + std::vector aux_handles; /*! \brief variable from engine */ Engine::VarHandle var; /*! * \brief if this is true, this means the data do not come * from Storage, and do not need to be freed */ + /*! \brief construct from static data */ bool static_data; - /*! \brief whether allocation is delayed */ + /*! \brief whether data allocation is delayed. This doesn't indicate whether aux data + allocation is delayed. */ bool delay_alloc; + // the type of the storage. The storage_type is never kUndefinedStorage once the chunk + // is constructed. + NDArrayStorageType storage_type = kDefaultStorage; + /*! \brief type of aux */ + std::vector aux_types; + // context of data + Context ctx; + // The shape of the chunk data. + // This might not be the same shape as the NDArray, since the storage may be sparse. + // The default value for storage_shape is {0} when an empty non-default NDArray is created. + TShape storage_shape; + // The shape of aux data. The default value for the shape depends on the type of storage. + // If aux_shapes[i].Size() is zero, aux data i is empty. + std::vector aux_shapes; + // \brief skip the deletion of var handle. Usually set when shared_var is present. + bool skip_delete_var = false; + /*! \brief default cosntructor */ - Chunk() : static_data(true), delay_alloc(false) { - var = Engine::Get()->NewVariable(); - } - /*! \brief construct from static data */ - Chunk(const TBlob &data, int dev_id) - : static_data(true), - delay_alloc(false) { + Chunk() : static_data(true), delay_alloc(false) {} + + /*! \brief construct a new chunk */ + Chunk(TShape shape, Context ctx_, bool delay_alloc_, int dtype) + : static_data(false), delay_alloc(true), ctx(ctx_) { + auto size = shape.Size(); + storage_shape = shape; var = Engine::Get()->NewVariable(); + shandle.size = size * mshadow::mshadow_sizeof(dtype); + shandle.ctx = ctx_; + if (!delay_alloc_) this->CheckAndAlloc(); + } + + Chunk(const TBlob &data, int dev_id, Engine::VarHandle shared_var) + : static_data(true), delay_alloc(false) { + CHECK(storage_type == kDefaultStorage); + // init var + if (shared_var == nullptr) { + var = Engine::Get()->NewVariable(); + } else { + skip_delete_var = true; + var = shared_var; + } + // init ctx if (data.dev_mask_ == cpu::kDevMask) { - shandle.ctx = Context::CPU(); + ctx = Context::CPU(); } else { CHECK_EQ(data.dev_mask_, gpu::kDevMask); - shandle.ctx = Context::GPU(dev_id); + ctx = Context::GPU(dev_id); } + // init shandle + shandle.ctx = ctx; shandle.dptr = data.dptr_; shandle.size = data.shape_.Size() * mshadow::mshadow_sizeof(data.type_flag_); + storage_shape = data.shape_; } - /*! \brief construct a new chunk */ - Chunk(uint64_t size, Context ctx, bool delay_alloc_, int dtype) - : static_data(false), delay_alloc(true) { - var = Engine::Get()->NewVariable(); - shandle.size = size * mshadow::mshadow_sizeof(dtype); + // Constructor for a non-default storage chunk + Chunk(NDArrayStorageType storage_type_, const TShape &storage_shape_, Context ctx_, + bool delay_alloc_, int dtype, const std::vector &aux_types_, + const std::vector &aux_shapes_) + : static_data(false), delay_alloc(delay_alloc_), storage_type(storage_type_), + aux_types(aux_types_), ctx(ctx_), storage_shape(storage_shape_), + aux_shapes(aux_shapes_) { shandle.ctx = ctx; - if (!delay_alloc_) this->CheckAndAlloc(); + var = Engine::Get()->NewVariable(); + // aux_handles always reflect the correct number of aux data + for (size_t i = 0; i < aux_shapes.size(); i++) { + CheckAndAllocAuxData(i, aux_shapes[i]); + } + if (!delay_alloc) { + CheckAndAllocData(storage_shape, dtype); + } } /*! \brief check if delay alloc is on, do alloc if not yet done */ inline void CheckAndAlloc(void) { @@ -392,16 +667,81 @@ class NDArray { delay_alloc = false; } } - /*! \brief destructor */ - ~Chunk() { - if (static_data || delay_alloc) { - Engine::Get()->DeleteVariable([](RunContext s) {}, shandle.ctx, var); + inline void CheckAndAlloc(const TShape &shape, const std::vector &aux_shapes, + int dtype) { + // calculate size, perform allocation + if (kRowSparseStorage == storage_type) { + // For row sparse, aux_shape indicates the number of rows to allocate + auto aux_shape = aux_shapes[rowsparse::kIdx]; + CHECK_EQ(shape.ndim(), 2) << "High dim RowSparse not yet implemented"; + CheckAndAllocAuxData(rowsparse::kIdx, aux_shape); + TShape storage_shape(shape); + storage_shape[0] = aux_shape[0]; + CheckAndAllocData(storage_shape, dtype); + } else if (kCSRStorage == storage_type) { + CheckAndAllocAuxData(csr::kIndPtr, aux_shapes[csr::kIndPtr]); + CheckAndAllocAuxData(csr::kIdx, aux_shapes[csr::kIdx]); + CheckAndAllocData(aux_shapes[csr::kIdx], dtype); } else { - Storage::Handle h = this->shandle; - Engine::Get()->DeleteVariable([h](RunContext s) { - Storage::Get()->Free(h); - }, shandle.ctx, var); + LOG(FATAL) << "Storage type " << storage_type << " not implemented for CheckAndAlloc"; + } + } + // create storage handle for data based on shape and dtype, assuming ctx is set + // storage shape is also updated + // if data is already allocated, try reuse the storage. Otherwise, free the current one + // and allocate new storage + inline void CheckAndAllocData(const TShape &shape, int dtype) { + CHECK_NE(aux_shapes.size(), 0) << "data is expected to be allocated after aux_data"; + auto dbytes = shape.Size() * mshadow::mshadow_sizeof(dtype); + if (shandle.size < dbytes) { + // free storage if necessary and alloc again + if (shandle.size > 0) Storage::Get()->Free(shandle); + // init storage + shandle = Storage::Get()->Alloc(dbytes, ctx); + } + // init shape + storage_shape = shape; + // delay_alloc is only set when data storage handle is present + delay_alloc = false; + } + // create storage handle for aux data based on shape + // this function assumes ctx, aux shapes and aux types are set + // aux shape is also updated + // if aux data is already allocated, try reuse the storage. Otherwise, free the current one + // and allocate new storage + inline void CheckAndAllocAuxData(size_t i, const TShape &shape) { + CHECK_EQ(shape.ndim(), 1) << "shape must be 1D in CheckAndAllocAuxData"; + CHECK_NE(storage_type, kUndefinedStorage) + << "storage type cannot be kUndefinedStorage in CheckAndAllocAuxData"; + CHECK_NE(storage_type, kDefaultStorage) + << "storage type cannot be kDefaultStorage in CheckAndAllocAuxData"; + if (aux_handles.size() <= i) { + aux_handles.resize(i + 1); } + size_t aux_bytes = shape.Size() * mshadow::mshadow_sizeof(aux_types[i]); + if (aux_handles[i].size < aux_bytes) { + // free storage if necessary and alloc again + if (aux_handles[i].size > 0) Storage::Get()->Free(aux_handles[i]); + // init aux storage + aux_handles[i] = Storage::Get()->Alloc(aux_bytes, ctx); + } + // init shape + aux_shapes[i] = shape; + } + /*! \brief destructor */ + ~Chunk() { + if (skip_delete_var) return; + bool skip_free = static_data || delay_alloc; + Storage::Handle h = this->shandle; + std::vector aux_h = this->aux_handles; + Engine::Get()->DeleteVariable([h, aux_h, skip_free](RunContext s) { + if (skip_free == false) { + Storage::Get()->Free(h); + for (size_t i = 0; i < aux_h.size(); i++) { + if (aux_h[i].size > 0) Storage::Get()->Free(aux_h[i]); + } + } + }, shandle.ctx, var); } }; @@ -409,11 +749,11 @@ class NDArray { std::shared_ptr Mkl_mem_; #endif /*! \brief internal data of NDArray */ - std::shared_ptr ptr_; + std::shared_ptr ptr_{nullptr}; /*! \brief shape of current NDArray */ TShape shape_; /*! \brief offset in chunk */ - size_t offset_; + size_t offset_ = 0; /*! \brief type of data */ int dtype_ = -1; /*! \brief node entry for autograd */ @@ -428,11 +768,112 @@ class NDArray { * \param from the ndarray we want to copy data from * \param to the target ndarray * \param priority Priority of the action. + * \param alloc_output whether to allocate memory for the output ndarray * \note The function name explicitly marks the order of from and to * due to different possible convention carried by copy function. */ void CopyFromTo(const NDArray &from, NDArray *to, int priority = 0); +// Make a copy of a CSR NDArray +template +inline void CopyFromToCsrImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + // if source storage is not initialized, fill destination with zeros + auto s = ctx.get_stream(); + if (!from.storage_initialized()) { + // TODO(haibin) implement FillZerosCsrImpl + // op::FillZerosCsrImpl(s, to); + return; + } + // Allocate storage + to->CheckAndAllocAuxData(csr::kIndPtr, from.aux_shape(csr::kIndPtr)); + to->CheckAndAllocAuxData(csr::kIdx, from.aux_shape(csr::kIdx)); + to->CheckAndAllocData(from.aux_shape(csr::kIdx)); + // FIXME This is a naive implementation for CSR copy. It, however, is + // not efficient when the source CSR is sliced. In that case, we're copying + // a superset of values and indices of the slice. + // Ideally, we should truncate the values and indices array, and adjust indptr + // accordingly. + TBlob val = to->data(); + TBlob indptr = to->aux_data(csr::kIndPtr); + TBlob idx = to->aux_data(csr::kIdx); + ndarray::Copy(from.data(), &val, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(csr::kIndPtr), &indptr, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(csr::kIdx), &idx, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of a row-sparse NDArray +template +inline void CopyFromToRspImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + // if source is zeros, fill destination with zeros, too + auto s = ctx.get_stream(); + if (!from.storage_initialized()) { + op::FillZerosRspImpl(s, to); + return; + } + auto aux_shape = from.aux_shape(rowsparse::kIdx); + to->CheckAndAlloc({aux_shape}); + TBlob val = to->data(); + TBlob idx = to->aux_data(rowsparse::kIdx); + ndarray::Copy(from.data(), &val, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(rowsparse::kIdx), &idx, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of a dense NDArray +template +inline void CopyFromToDnsImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + TBlob tmp = to->data(); + ndarray::Copy(from.data(), &tmp, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of an NDArray based on storage type +template +void CopyFromToImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace std; + using namespace mshadow; + // if storage type doesn't match, cast the storage first + auto from_stype = from.storage_type(); + auto to_stype = to->storage_type(); + NDArray casted_nd; + if (from_stype != to_stype) { + TShape shape = from.shape(); + auto from_ctx = from.ctx(); + auto s = ctx.get_stream(); + // TODO(haibin) inplace conversion + if (to_stype == kDefaultStorage) { + casted_nd = NDArray(shape, from_ctx); + } else { + casted_nd = NDArray(to_stype, shape, from_ctx); + } + op::CastStorageComputeImpl(s, from, casted_nd); + } else { + casted_nd = from; + } + if (to_stype == kDefaultStorage) { + CopyFromToDnsImpl(casted_nd, to, ctx); + } else if (to_stype == kRowSparseStorage) { + CopyFromToRspImpl(casted_nd, to, ctx); + } else if (to_stype == kCSRStorage) { + CopyFromToCsrImpl(casted_nd, to, ctx); + } else { + LOG(FATAL) << "unknown storage type" << to_stype; + } + if (is_same::value || is_same::value) { + // Wait GPU kernel to complete + ctx.get_stream()->Wait(); + } +} /*! * \brief Perform elementwise sum over each data from source, store result into out. diff --git a/include/mxnet/op_attr_types.h b/include/mxnet/op_attr_types.h index 316a90fe0841..bf9961c8234e 100644 --- a/include/mxnet/op_attr_types.h +++ b/include/mxnet/op_attr_types.h @@ -7,7 +7,6 @@ #ifndef MXNET_OP_ATTR_TYPES_H_ #define MXNET_OP_ATTR_TYPES_H_ - #include #include @@ -18,6 +17,9 @@ #include "./operator.h" #include "./ndarray.h" +#define FCOMP_EX_CPU "FComputeEx" +#define FCOMP_EX_GPU "FComputeEx" + namespace mxnet { using nnvm::NodeAttrs; @@ -61,6 +63,17 @@ using FCompute = std::function& inputs, const std::vector& req, const std::vector& outputs)>; +/*! + * \brief Resiger an NDArray compute function for simple stateless forward only operator + * + * \note Register under "FComputeEx" and "FComputeEx" + * Dispatched only when operators process non-default storage inputs or outputs + */ +using FComputeEx = std::function& inputs, + const std::vector& req, + const std::vector& outputs)>; } // namespace mxnet #endif // MXNET_OP_ATTR_TYPES_H_ diff --git a/include/mxnet/storage.h b/include/mxnet/storage.h index 1b765233947d..e236a9cf313b 100644 --- a/include/mxnet/storage.h +++ b/include/mxnet/storage.h @@ -23,11 +23,11 @@ class Storage { /*! * \brief Pointer to the data. */ - void* dptr; + void* dptr{nullptr}; /*! * \brief Size of the storage. */ - size_t size; + size_t size{0}; /*! * \brief Context information about device and ID. */ diff --git a/mshadow b/mshadow index c037b06ddd81..bbde96541478 160000 --- a/mshadow +++ b/mshadow @@ -1 +1 @@ -Subproject commit c037b06ddd810d39322cd056650f8b1f4763dd9d +Subproject commit bbde96541478cd93fe9d617e8d1d955c264bac1d diff --git a/nnvm b/nnvm index b279286304ac..31920d7c0ccc 160000 --- a/nnvm +++ b/nnvm @@ -1 +1 @@ -Subproject commit b279286304ac954098d94a2695bca599e832effb +Subproject commit 31920d7c0ccc9239561311cd1e568ea82bbe572b diff --git a/python/mxnet/__init__.py b/python/mxnet/__init__.py index ff5f6cd6be7e..768d9ede2643 100644 --- a/python/mxnet/__init__.py +++ b/python/mxnet/__init__.py @@ -8,6 +8,7 @@ from . import base from . import contrib from . import ndarray +from . import sparse_ndarray from . import name # use mx.sym as short for symbol from . import symbol as sym @@ -18,6 +19,7 @@ from . import operator # use mx.nd as short for mx.ndarray from . import ndarray as nd +from . import sparse_ndarray as sparse_nd # use mx.rnd as short for mx.random from . import random as rnd from . import random diff --git a/python/mxnet/contrib/autograd.py b/python/mxnet/contrib/autograd.py index 40ab289c8f4c..5f15e8c3f36f 100644 --- a/python/mxnet/contrib/autograd.py +++ b/python/mxnet/contrib/autograd.py @@ -7,6 +7,8 @@ import functools from ..base import _LIB, check_call, string_types from ..base import mx_uint, NDArrayHandle, c_array +# pylint: disable= unused-import +from ..sparse_ndarray import SparseNDArray from ..ndarray import NDArray, zeros_like from ..symbol import _GRAD_REQ_MAP diff --git a/python/mxnet/executor.py b/python/mxnet/executor.py index 6b9aab2de6f1..b585c23121cd 100644 --- a/python/mxnet/executor.py +++ b/python/mxnet/executor.py @@ -11,6 +11,7 @@ from .base import mx_uint, NDArrayHandle, ExecutorHandle from .base import check_call, c_array, py_str from .ndarray import NDArray +from .sparse_ndarray import SparseNDArray, _STORAGE_TYPE_STR_TO_ID from . import ndarray as nd # those functions are not used here, we just import them to keep backward compatibility @@ -90,7 +91,18 @@ def _get_outputs(self): handles = ctypes.POINTER(NDArrayHandle)() check_call(_LIB.MXExecutorOutputs(self.handle, ctypes.byref(out_size), ctypes.byref(handles))) - return [NDArray(NDArrayHandle(handles[i])) for i in range(out_size.value)] + num_output = out_size.value + outputs = [] + for i in range(num_output): + storage_type = ctypes.c_int(0) + check_call(_LIB.MXNDArrayGetStorageType(ctypes.cast(handles[i], NDArrayHandle), + ctypes.byref(storage_type))) + assert(storage_type != _STORAGE_TYPE_STR_TO_ID['undefined']) + output = NDArray(NDArrayHandle(handles[i])) \ + if storage_type.value == _STORAGE_TYPE_STR_TO_ID['default_storage'] \ + else SparseNDArray(NDArrayHandle(handles[i])) + outputs.append(output) + return outputs def forward(self, is_train=False, **kwargs): """Calculate the outputs specified by the bound symbol. diff --git a/python/mxnet/kvstore.py b/python/mxnet/kvstore.py index ab07421caffd..3384be7947ac 100644 --- a/python/mxnet/kvstore.py +++ b/python/mxnet/kvstore.py @@ -48,7 +48,7 @@ def updater_handle(key, lhs_handle, rhs_handle, _): class KVStore(object): """A key-value store for synchronization of values, over multiple devices.""" - def __init__(self, handle): + def __init__(self, handle, name2idx=None): """Initializes a new KVStore. Parameters @@ -58,6 +58,7 @@ def __init__(self, handle): """ assert isinstance(handle, KVStoreHandle) self.handle = handle + self.name2idx = name2idx if name2idx is not None else {} self._updater = None self._updater_func = None @@ -395,7 +396,7 @@ def _send_command_to_servers(self, head, body): check_call(_LIB.MXKVStoreSendCommmandToServers( self.handle, mx_uint(head), c_str(body))) -def create(name='local'): +def create(name='local', name2idx=None): """Creates a new KVStore. For single machine training, there are two commonly used types: @@ -435,4 +436,4 @@ def create(name='local'): handle = KVStoreHandle() check_call(_LIB.MXKVStoreCreate(c_str(name), ctypes.byref(handle))) - return KVStore(handle) + return KVStore(handle, name2idx=name2idx) diff --git a/python/mxnet/model.py b/python/mxnet/model.py index 5eddfac47981..b90500d4a9c5 100644 --- a/python/mxnet/model.py +++ b/python/mxnet/model.py @@ -37,7 +37,7 @@ 'eval_metric', 'locals']) -def _create_kvstore(kvstore, num_device, arg_params): +def _create_kvstore(kvstore, num_device, arg_params, name2idx=None): """Create kvstore This function select and create a proper kvstore if given the kvstore type. @@ -61,7 +61,7 @@ def _create_kvstore(kvstore, num_device, arg_params): # no need to use kv for single device and single machine kv = None else: - kv = kvs.create(kvstore) + kv = kvs.create(kvstore, name2idx=name2idx) if kvstore is 'local': # automatically select a proper local max_size = max(np.prod(param.shape) for param in @@ -85,25 +85,50 @@ def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, if update_on_kvstore: kvstore.pull(idx, param_on_devs, priority=-idx) -def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore): - """Perform update of param_arrays from grad_arrays on kvstore.""" - for index, pair in enumerate(zip(param_arrays, grad_arrays)): +def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore, + stype_dict=None, param_names=None): + """Perform update of param_arrays from grad_arrays on kvstore. + If `param_names` is None or kvstore doesn't have a `name2idx` dictionary, + the index of a param is determined by the order it appears in `param_arrays`. """ + stype_dict = {} if stype_dict is None else stype_dict + for i, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue + index = i + if param_names is not None: + name = param_names[i] + index = index if name not in kvstore.name2idx else kvstore.name2idx[name] + # cast storage type if stype doesn't match + if name in stype_dict: + for i, grad in enumerate(grad_list): + stype = stype_dict[name] + if grad_list[i].storage_type != stype: + grad_list[i] = nd.cast_storage(grad, stype) # push gradient, priority is negative index kvstore.push(index, grad_list, priority=-index) # pull back the weights kvstore.pull(index, arg_list, priority=-index) def _update_params(param_arrays, grad_arrays, updater, num_device, - kvstore=None): + kvstore=None, stype_dict=None, param_names=None): """Perform update of param_arrays from grad_arrays not on kvstore.""" - for index, pair in enumerate(zip(param_arrays, grad_arrays)): + stype_dict = {} if stype_dict is None else stype_dict + for i, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue + # cast storage type if stype doesn't match + if param_names is not None and param_names[i] in stype_dict: + for i, grad in enumerate(grad_list): + stype = stype_dict[param_names[i]] + if grad_list[i].storage_type != stype: + grad_list[i] = nd.cast_storage(grad, stype) + index = i if kvstore: + if param_names is not None: + name = param_names + index = index if name not in kvstore.name2idx else kvstore.name2idx[name] # push gradient, priority is negative index kvstore.push(index, grad_list, priority=-index) # pull back the sum gradients, to the same locations. diff --git a/python/mxnet/module/__init__.pyc b/python/mxnet/module/__init__.pyc new file mode 100644 index 000000000000..e904d474819f Binary files /dev/null and b/python/mxnet/module/__init__.pyc differ diff --git a/python/mxnet/module/__pycache__/__init__.cpython-34.pyc b/python/mxnet/module/__pycache__/__init__.cpython-34.pyc new file mode 100644 index 000000000000..2edbdd3dc763 Binary files /dev/null and b/python/mxnet/module/__pycache__/__init__.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/base_module.cpython-34.pyc b/python/mxnet/module/__pycache__/base_module.cpython-34.pyc new file mode 100644 index 000000000000..c10d60c44392 Binary files /dev/null and b/python/mxnet/module/__pycache__/base_module.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/bucketing_module.cpython-34.pyc b/python/mxnet/module/__pycache__/bucketing_module.cpython-34.pyc new file mode 100644 index 000000000000..ca3b3adb5a1e Binary files /dev/null and b/python/mxnet/module/__pycache__/bucketing_module.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/executor_group.cpython-34.pyc b/python/mxnet/module/__pycache__/executor_group.cpython-34.pyc new file mode 100644 index 000000000000..8dc95be1b9a9 Binary files /dev/null and b/python/mxnet/module/__pycache__/executor_group.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/module.cpython-34.pyc b/python/mxnet/module/__pycache__/module.cpython-34.pyc new file mode 100644 index 000000000000..d2fc2f5da525 Binary files /dev/null and b/python/mxnet/module/__pycache__/module.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/python_module.cpython-34.pyc b/python/mxnet/module/__pycache__/python_module.cpython-34.pyc new file mode 100644 index 000000000000..0ccb1325b197 Binary files /dev/null and b/python/mxnet/module/__pycache__/python_module.cpython-34.pyc differ diff --git a/python/mxnet/module/__pycache__/sequential_module.cpython-34.pyc b/python/mxnet/module/__pycache__/sequential_module.cpython-34.pyc new file mode 100644 index 000000000000..c83a17edc696 Binary files /dev/null and b/python/mxnet/module/__pycache__/sequential_module.cpython-34.pyc differ diff --git a/python/mxnet/module/base_module.py b/python/mxnet/module/base_module.py index f998fbc27d6c..586f1de31858 100644 --- a/python/mxnet/module/base_module.py +++ b/python/mxnet/module/base_module.py @@ -849,9 +849,17 @@ def get_input_grads(self, merge_multi_context=True): """ raise NotImplementedError() - def update(self): + def update(self, storage_type_dict=None): """Updates parameters according to the installed optimizer and the gradients computed - in the previous forward-backward batch. + in the previous forward-backward batch. The storage type of parameters is casted according + to `storage_type_dict`, if provided. + + Parameters + ---------- + storage_type_dict: dict of str to str + Defaults to ``None``. Desired storage types of parameters for parameter update. If the + parameter gradient is not of desired storage type, its storage type will be casted + before the update. Examples -------- diff --git a/python/mxnet/module/base_module.pyc b/python/mxnet/module/base_module.pyc new file mode 100644 index 000000000000..b9f548f4135c Binary files /dev/null and b/python/mxnet/module/base_module.pyc differ diff --git a/python/mxnet/module/bucketing_module.py b/python/mxnet/module/bucketing_module.py index 11922ddafb56..ae10e8e401d0 100644 --- a/python/mxnet/module/bucketing_module.py +++ b/python/mxnet/module/bucketing_module.py @@ -399,13 +399,13 @@ def backward(self, out_grads=None): assert self.binded and self.params_initialized self._curr_module.backward(out_grads=out_grads) - def update(self): + def update(self, storage_type_dict=None): """Updates parameters according to installed optimizer and the gradient computed in the previous forward-backward cycle. """ assert self.binded and self.params_initialized and self.optimizer_initialized self._params_dirty = True - self._curr_module.update() + self._curr_module.update(storage_type_dict=storage_type_dict) def get_outputs(self, merge_multi_context=True): """Gets outputs from a previous forward computation. diff --git a/python/mxnet/module/bucketing_module.pyc b/python/mxnet/module/bucketing_module.pyc new file mode 100644 index 000000000000..2bb8002186b6 Binary files /dev/null and b/python/mxnet/module/bucketing_module.pyc differ diff --git a/python/mxnet/module/executor_group.py b/python/mxnet/module/executor_group.py index 74640df97f16..84456e104b73 100755 --- a/python/mxnet/module/executor_group.py +++ b/python/mxnet/module/executor_group.py @@ -4,9 +4,6 @@ import logging from collections import OrderedDict - -import numpy as np - from .. import context as ctx from .. import ndarray as nd from ..io import DataDesc @@ -564,6 +561,7 @@ def update_metric(self, eval_metric, labels): def _bind_ith_exec(self, i, data_shapes, label_shapes, shared_group): """Internal utility function to bind the i-th executor. + This function utilizes simple_bind python interface. """ shared_exec = None if shared_group is None else shared_group.execs[i] context = self.contexts[i] @@ -573,85 +571,14 @@ def _bind_ith_exec(self, i, data_shapes, label_shapes, shared_group): if label_shapes is not None: input_shapes.update(dict(label_shapes)) - arg_shapes, _, aux_shapes = self.symbol.infer_shape(**input_shapes) - assert arg_shapes is not None, "shape inference failed" - input_types = {x.name: x.dtype for x in data_shapes} if label_shapes is not None: input_types.update({x.name: x.dtype for x in label_shapes}) - arg_types, _, aux_types = self.symbol.infer_type(**input_types) - assert arg_types is not None, "type inference failed" - - arg_arrays = [] - grad_arrays = {} if self.for_training else None - - def _get_or_reshape(name, shared_data_arrays, arg_shape, arg_type, context, logger): - """Internal helper to get a memory block or re-use by re-shaping.""" - if name in shared_data_arrays: - arg_arr = shared_data_arrays[name] - if np.prod(arg_arr.shape) >= np.prod(arg_shape): - # nice, we can directly re-use this data blob - assert arg_arr.dtype == arg_type - arg_arr = arg_arr.reshape(arg_shape) - else: - logger.warning(('bucketing: data "%s" has a shape %s' % (name, arg_shape)) + - (', which is larger than already allocated ') + - ('shape %s' % (arg_arr.shape,)) + - ('. Need to re-allocate. Consider putting ') + - ('default_bucket_key to') + - (' be the bucket taking the largest input for better ') + - ('memory sharing.')) - arg_arr = nd.zeros(arg_shape, context, dtype=arg_type) - - # replace existing shared array because the new one is bigger - shared_data_arrays[name] = arg_arr - else: - arg_arr = nd.zeros(arg_shape, context, dtype=arg_type) - shared_data_arrays[name] = arg_arr - - return arg_arr - - # create or borrow arguments and gradients - for j in range(len(self.arg_names)): - name = self.arg_names[j] - if name in self.param_names: # model parameters - if shared_exec is None: - arg_arr = nd.zeros(arg_shapes[j], context, dtype=arg_types[j]) - if self.grad_req[name] != 'null': - grad_arr = nd.zeros(arg_shapes[j], context, dtype=arg_types[j]) - grad_arrays[name] = grad_arr - else: - arg_arr = shared_exec.arg_dict[name] - assert arg_arr.shape == arg_shapes[j] - assert arg_arr.dtype == arg_types[j] - if self.grad_req[name] != 'null': - grad_arrays[name] = shared_exec.grad_dict[name] - else: # data, label, or states - arg_arr = _get_or_reshape(name, shared_data_arrays, arg_shapes[j], arg_types[j], - context, self.logger) - - # data might also need grad if inputs_need_grad is True - if self.grad_req[name] != 'null': - grad_arrays[name] = _get_or_reshape('grad of ' + name, shared_data_arrays, - arg_shapes[j], arg_types[j], context, - self.logger) - - arg_arrays.append(arg_arr) - - # create or borrow aux variables - if shared_exec is None: - aux_arrays = [nd.zeros(s, context, dtype=t) for s, t in zip(aux_shapes, aux_types)] - else: - for j, arr in enumerate(shared_exec.aux_arrays): - assert aux_shapes[j] == arr.shape - assert aux_types[j] == arr.dtype - aux_arrays = shared_exec.aux_arrays[:] - - executor = self.symbol.bind(ctx=context, args=arg_arrays, - args_grad=grad_arrays, aux_states=aux_arrays, - grad_req=self.grad_req, shared_exec=shared_exec) - # Get the total bytes allocated for this executor + executor = self.symbol.simple_bind(ctx=context, grad_req=self.grad_req, + type_dict=input_types, param_names=self.param_names, + shared_exec=shared_exec, + shared_data_arrays=shared_data_arrays, **input_shapes) self._total_exec_bytes += int(executor.debug_str().split('\n')[-3].split()[1]) return executor diff --git a/python/mxnet/module/executor_group.pyc b/python/mxnet/module/executor_group.pyc new file mode 100644 index 000000000000..17e1ac998aab Binary files /dev/null and b/python/mxnet/module/executor_group.pyc differ diff --git a/python/mxnet/module/module.py b/python/mxnet/module/module.py index fef5c507d7e8..a0eb19dafccc 100644 --- a/python/mxnet/module/module.py +++ b/python/mxnet/module/module.py @@ -454,8 +454,12 @@ def init_optimizer(self, kvstore='local', optimizer='sgd', if self._params_dirty: self._sync_params_from_devices() + name2idx = {} + for idx, name in enumerate(self._exec_group.param_names): + name2idx[name] = idx + (kvstore, update_on_kvstore) = \ - _create_kvstore(kvstore, len(self._context), self._arg_params) + _create_kvstore(kvstore, len(self._context), self._arg_params, name2idx=name2idx) batch_size = self._exec_group.batch_size if kvstore and 'dist' in kvstore.type and '_sync' in kvstore.type: @@ -558,7 +562,7 @@ def backward(self, out_grads=None): assert self.binded and self.params_initialized self._exec_group.backward(out_grads=out_grads) - def update(self): + def update(self, storage_type_dict=None): """Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. @@ -572,7 +576,9 @@ def update(self): if self._update_on_kvstore: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, - self._kvstore) + self._kvstore, + stype_dict=storage_type_dict, + param_names=self._param_names) else: _update_params(self._exec_group.param_arrays, self._exec_group.grad_arrays, diff --git a/python/mxnet/module/module.pyc b/python/mxnet/module/module.pyc new file mode 100644 index 000000000000..0a997f2c431f Binary files /dev/null and b/python/mxnet/module/module.pyc differ diff --git a/python/mxnet/module/python_module.py b/python/mxnet/module/python_module.py index f46ea280aaff..82dcb06aa020 100644 --- a/python/mxnet/module/python_module.py +++ b/python/mxnet/module/python_module.py @@ -110,7 +110,7 @@ def init_params(self, initializer=Uniform(0.01), arg_params=None, aux_params=Non """ pass - def update(self): + def update(self, storage_type_dict=None): """Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. Currently we do nothing here. Subclass should override this method if contains parameters. diff --git a/python/mxnet/module/python_module.pyc b/python/mxnet/module/python_module.pyc new file mode 100644 index 000000000000..d4a32e38e9b5 Binary files /dev/null and b/python/mxnet/module/python_module.pyc differ diff --git a/python/mxnet/module/sequential_module.py b/python/mxnet/module/sequential_module.py index 21e30fb3b0ce..383286642e0c 100644 --- a/python/mxnet/module/sequential_module.py +++ b/python/mxnet/module/sequential_module.py @@ -344,14 +344,14 @@ def backward(self, out_grads=None): out_grads = module.get_input_grads() - def update(self): + def update(self, storage_type_dict=None): """Updates parameters according to installed optimizer and the gradient computed in the previous forward-backward cycle. """ assert self.binded and self.params_initialized and self.optimizer_initialized for module in self._modules: - module.update() + module.update(storage_type_dict=storage_type_dict) def get_outputs(self, merge_multi_context=True): """Gets outputs from a previous forward computation. diff --git a/python/mxnet/module/sequential_module.pyc b/python/mxnet/module/sequential_module.pyc new file mode 100644 index 000000000000..40ac8e055eb2 Binary files /dev/null and b/python/mxnet/module/sequential_module.pyc differ diff --git a/python/mxnet/ndarray.py b/python/mxnet/ndarray.py index f86404eb9853..1d9aed6b42b0 100644 --- a/python/mxnet/ndarray.py +++ b/python/mxnet/ndarray.py @@ -19,7 +19,7 @@ import numpy as np from .base import _LIB, string_types, numeric_types from .base import c_array, py_str, c_str, mx_real_t, _Null # pylint: disable=unused-import -from .base import mx_uint, NDArrayHandle, check_call, OpHandle +from .base import mx_uint, NDArrayHandle, check_call from .base import ctypes2buffer from .context import Context from . import _ndarray_internal as _internal @@ -31,6 +31,7 @@ # pylint: disable=unused-import try: if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: + #TODO remove some import? from ._ctypes.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke elif _sys.version_info >= (3, 0): from ._cy3.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke @@ -50,7 +51,6 @@ np.uint8 : 3, np.int32 : 4 } - _DTYPE_MX_TO_NP = { 0 : np.float32, 1 : np.float64, @@ -58,7 +58,18 @@ 3 : np.uint8, 4 : np.int32 } -# pylint: enable= no-member +_STORAGE_TYPE_ID_TO_STR = { + -1 : 'undefined', + 0 : 'default_storage', + 1 : 'row_sparse', + 2 : 'csr', +} +_STORAGE_TYPE_STR_TO_ID = { + 'undefined' : -1, + 'default_storage' : 0, + 'row_sparse' : 1, + 'csr' : 2, +} def _new_empty_handle(): """Returns a new empty handle. @@ -102,6 +113,11 @@ def waitall(): """ check_call(_LIB.MXNDArrayWaitAll()) +def _storage_type(handle): + storage_type = ctypes.c_int(0) + check_call(_LIB.MXNDArrayGetStorageType(handle, ctypes.byref(storage_type))) + return _STORAGE_TYPE_ID_TO_STR[storage_type.value] + class NDArray(NDArrayBase): """An array object representing a multidimensional, homogeneous array of fixed-size items. @@ -115,6 +131,9 @@ def __repr__(self): return '<%s %s @%s>' % (self.__class__.__name__, shape_info, self.context) + def __reduce__(self): + return (NDArray, (None,), self.__getstate__()) + def __add__(self, other): """x.__add__(y) <=> x+y <=> mx.nd.add(x, y) """ return add(self, other) @@ -625,7 +644,6 @@ def wait_to_read(self): """ check_call(_LIB.MXNDArrayWaitToRead(self.handle)) - @property def ndim(self): """Returns the number of dimensions of this array @@ -660,6 +678,7 @@ def shape(self): self.handle, ctypes.byref(ndim), ctypes.byref(pdata))) return tuple(pdata[:ndim.value]) + @property def size(self): """Number of elements in the array. @@ -721,6 +740,10 @@ def dtype(self): self.handle, ctypes.byref(mx_dtype))) return _DTYPE_MX_TO_NP[mx_dtype.value] + @property + def storage_type(self): + return _storage_type(self.handle) + @property # pylint: disable= invalid-name, undefined-variable def T(self): @@ -926,6 +949,13 @@ def backward(self, out_grad=None): 1, c_array(NDArrayHandle, [self.handle]), c_array(NDArrayHandle, ograd_handles))) + def to_csr(self): + # pylint: disable=undefined-variable + return cast_storage(self, storage_type='csr') + + def to_rsp(self): + # pylint: disable=undefined-variable + return cast_storage(self, storage_type='row_sparse') def onehot_encode(indices, out): """One-hot encoding indices into matrix out. @@ -999,7 +1029,6 @@ def zeros(shape, ctx=None, dtype=mx_real_t, **kwargs): # pylint: disable= unused-argument if ctx is None: ctx = Context.default_ctx - # pylint: disable= no-member, protected-access return _internal._zeros(shape=shape, ctx=ctx, dtype=dtype) # pylint: enable= no-member, protected-access @@ -2380,37 +2409,5 @@ def %s(%s): ndarray_function.__module__ = 'mxnet.ndarray' return ndarray_function - -# pylint: enable=too-many-locals, invalid-name -def _init_ndarray_module(ndarray_class, root_namespace): - """List and add all the ndarray functions to current module.""" - _set_ndarray_class(ndarray_class) - plist = ctypes.POINTER(ctypes.c_char_p)() - size = ctypes.c_uint() - - check_call(_LIB.MXListAllOpNames(ctypes.byref(size), - ctypes.byref(plist))) - op_names = [] - for i in range(size.value): - op_names.append(py_str(plist[i])) - - module_obj = _sys.modules["%s.ndarray" % root_namespace] - module_internal = _sys.modules["%s._ndarray_internal" % root_namespace] - module_contrib = _sys.modules["%s.contrib.ndarray" % root_namespace] - for name in op_names: - hdl = OpHandle() - check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) - function = _make_ndarray_function(hdl, name) - if function.__name__.startswith('_contrib_'): - function.__name__ = function.__name__[9:] - function.__module__ = 'mxnet.contrib.ndarray' - setattr(module_contrib, function.__name__, function) - elif function.__name__.startswith('_'): - setattr(module_internal, function.__name__, function) - else: - setattr(module_obj, function.__name__, function) - -_init_ndarray_module(NDArray, "mxnet") - # from .base import add_fileline_to_docstring # add_fileline_to_docstring(__name__) diff --git a/python/mxnet/sparse_ndarray.py b/python/mxnet/sparse_ndarray.py new file mode 100644 index 000000000000..63fbfd0e5510 --- /dev/null +++ b/python/mxnet/sparse_ndarray.py @@ -0,0 +1,641 @@ +# coding: utf-8 +"""SparseNDArray API of mxnet.""" +from __future__ import absolute_import +from __future__ import division +try: + from __builtin__ import slice as py_slice +except ImportError: + from builtins import slice as py_slice + +import ctypes +import warnings + +import os as _os +import sys as _sys + +# import operator +import numpy as np +from .base import _LIB, numeric_types +from .base import c_array, py_str, mx_real_t, c_str +from .base import mx_uint, NDArrayHandle, check_call, OpHandle +from .context import Context +from . import _ndarray_internal as _internal +from . import ndarray +from .ndarray import _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP +from .ndarray import _STORAGE_TYPE_STR_TO_ID +from .ndarray import NDArray, _storage_type, _make_ndarray_function + +# Use different verison of SymbolBase +# When possible, use cython to speedup part of computation. +# pylint: disable=unused-import +try: + if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: + #TODO remove some import? + from ._ctypes.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke + elif _sys.version_info >= (3, 0): + from ._cy3.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke + else: + from ._cy2.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke +except ImportError: + if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: + raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") + from ._ctypes.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke + +# pylint: enable=unused-import +_STORAGE_AUX_TYPES = { + 'row_sparse': [np.int32], + 'csr': [np.int32, np.int32] +} + +def _new_alloc_handle(storage_type, shape, ctx, delay_alloc, dtype, aux_types, aux_shapes=None): + """Return a new handle with specified storage type, shape, dtype and context. + + Empty handle is only used to hold results + + Returns + ------- + handle + A new empty ndarray handle + """ + hdl = NDArrayHandle() + aux_type_ids = [int(_DTYPE_NP_TO_MX[np.dtype(aux_t).type]) for aux_t in aux_types] + aux_shapes = [(0,) for aux_t in aux_types] if aux_shapes is None else aux_shapes + aux_shape_lens = [len(aux_shape) for aux_shape in aux_shapes] + aux_shapes = sum(aux_shapes, ()) + num_aux = mx_uint(len(aux_types)) + check_call(_LIB.MXNDArrayCreateSparseEx( + ctypes.c_int(int(_STORAGE_TYPE_STR_TO_ID[storage_type])), + c_array(mx_uint, shape), + mx_uint(len(shape)), + ctypes.c_int(ctx.device_typeid), + ctypes.c_int(ctx.device_id), + ctypes.c_int(int(delay_alloc)), + ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])), + num_aux, + c_array(ctypes.c_int, aux_type_ids), + c_array(mx_uint, aux_shape_lens), + c_array(mx_uint, aux_shapes), + ctypes.byref(hdl))) + return hdl + +class SparseNDArray(NDArray): + """An array object representing a multidimensional, homogeneous array of +fixed-size items, stored in sparse format. + + """ + + def __reduce__(self): + raise Exception('Not implemented for SparseND yet!') + # return SparseNDArray, (None,), self.__getstate__() + + def __add__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __iadd__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __radd__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __isub__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __rsub__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __imul__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __rmul__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __rdiv__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __idiv__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __truediv__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __rtruediv__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __itruediv__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __pow__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __rpow__(self, other): + raise Exception('Not implemented for SparseND yet!') + + def __getstate__(self): + raise Exception('Not implemented for SparseND yet!') + + def __setstate__(self, state): + raise Exception('Not implemented for SparseND yet!') + + def __setitem__(self, key, value): + """x.__setitem__(i, y) <=> x[i]=y + + Set self[key] to value. Only slice [:] is supported. + + Parameters + ---------- + key : slice + The indexing key. + value : NDArray or numpy.ndarray + The value to set. + + Examples + -------- + >>> src = mx.sparse_nd.row_sparse(data, indices, (3,3)) + >>> src.asnumpy() + array([[ 1., 0., 2.], + [ 0., 0., 0.], + [ 4., 5., 6.]], dtype=float32) + >>> # assign SparseNDArray with same storage type + >>> x = mx.sparse_nd.zeros('row_sparse', (3,3)) + >>> x[:] = src + >>> x.asnumpy() + array([[ 1., 0., 2.], + [ 0., 0., 0.], + [ 4., 5., 6.]], dtype=float32) + >>> # assign NDArray to SparseNDArray + >>> x[:] = mx.nd.ones((3,3)) + >>> x.asnumpy() + array([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]], dtype=float32) + """ + if not self.writable: + raise ValueError('Failed to assign to a readonly NDArray') + if isinstance(key, py_slice): + if key.step is not None or key.start is not None or key.stop is not None: + raise ValueError('Assignment with slicing not supported in SparseNDArray.') + if isinstance(value, NDArray): + # avoid copying to itself + if value.handle is not self.handle: + value.copyto(self) + elif isinstance(value, numeric_types): + raise Exception("Assigning numeric types to SparseNDArray not supported yet.") + elif isinstance(value, (np.ndarray, np.generic)): + # TODO(haibin) Implement _sync_copyfrom for sparse ndarray to avoid an extra copy + warnings.warn('Assigning non-NDArray object to SparseNDArray is not efficient', + RuntimeWarning) + tmp = ndarray.array(value) + tmp.copyto(self) + else: + raise TypeError('type %s not supported' % str(type(value))) + else: + assert(isinstance(key, (int, tuple))) + raise Exception('SparseNDArray only supports [:] for assignment') + + def __getitem__(self, key): + """x.__getitem__(i) <=> x[i] + + Returns a sliced view of this array. + + Parameters + ---------- + key : int or slice + Indexing key. + + Examples + -------- + >>> x[:] = mx.nd.arange(0,6).reshape((2,3)) + >>> x.asnumpy() + array([[ 0., 1., 2.], + [ 3., 4., 5.]], dtype=float32) + >>> x[1:2].asnumpy() + array([[ 3., 4., 5.]], dtype=float32) + """ + stype = self.storage_type + if stype != 'csr': + raise Exception("__getitem__ for " + str(stype) + " not implemented yet") + if isinstance(key, int): + raise Exception("Not implemented yet") + if isinstance(key, py_slice): + if key.step is not None: + raise ValueError('NDArray only supports continuous slicing on axis 0') + if key.start is not None or key.stop is not None: + return self._slice(key.start, key.stop) + else: + return self + if isinstance(key, tuple): + raise ValueError('Multi-dimension indexing is not supported') + + def _sync_copyfrom(self, source_array): + raise Exception('Not implemented for SparseND yet!') + + def _slice(self, start, stop): + """Returns a read-only SparseNDArray slice that shares memory with current one. + To create a writable slice, please use ``mx.nd.slice`` instead. + + Parameters + ---------- + start : int + Starting index of slice. + stop : int + Finishing index of slice. + + Example + ---------- + >>> indptr = np.array([0, 2, 3, 6]) + >>> indices = np.array([0, 2, 2, 0, 1, 2]) + >>> data = np.array([1, 2, 3, 4, 5, 6]) + >>> a = mx.sparse_nd.csr(data, indptr, indices, (3, 3)) + >>> a.asnumpy() + array([[1, 0, 2], + [0, 0, 3], + [4, 5, 6]]) + + >>> a[1:2].asnumpy() + array([[0, 0, 3]]) + + """ + stype = self.storage_type + assert(stype == 'csr'), "_slice for " + str(stype) + " not implemented yet" + warnings.warn('slicing SparseNDArray is not efficient', RuntimeWarning) + shape = list(self.shape) + shape[0] = stop - start + handle = _new_alloc_handle(self.storage_type, tuple(shape), self.context, + True, self.dtype, self.aux_types) + start = mx_uint(start) if start else mx_uint(0) + stop = mx_uint(stop) if stop else mx_uint(self.shape[0]) + + check_call(_LIB.MXNDArraySliceEx(self.handle, start, stop, handle)) + ret = SparseNDArray(handle=handle, writable=False) + return ret + + def _at(self, idx): + raise Exception('at operator for SparseND is not supported.') + + def reshape(self, shape): + raise Exception('Not implemented for SparseND yet!') + + def broadcast_to(self, shape): + raise Exception('Not implemented for SparseND yet!') + + def _aux_type(self, i): + """Data-type of the array’s ith aux data. + + Returns + ------- + numpy.dtype + This NDArray's data type. + """ + aux_type = ctypes.c_int() + check_call(_LIB.MXNDArrayGetAuxType(self.handle, i, ctypes.byref(aux_type))) + return _DTYPE_MX_TO_NP[aux_type.value] + + @property + def _values(self): + """The values array of the SparseNDArray. This is a read-only view of the values array. + They reveal internal implementation details and should be used with care. + + Returns + ------- + NDArray + This SparseNDArray's values array. + """ + return self._data() + + @property + def _indices(self): + """The indices array of the SparseNDArray. This is a read-only view of the indices array. + They reveal internal implementation details and should be used with care. + + Returns + ------- + NDArray + This SparseNDArray's indices array. + """ + stype = self.storage_type + if stype == 'row_sparse': + return self._aux_data(0) + elif stype == 'csr': + return self._aux_data(1) + raise Exception("unknown storage type " + stype) + + @property + def _indptr(self): + """The indptr array of the SparseNDArray with `csr` storage type. + This is a read-only view of the indptr array. + They reveal internal implementation details and should be used with care. + + Returns + ------- + NDArray + This SparseNDArray's indptr array. + """ + stype = self.storage_type + if stype == 'csr': + return self._aux_data(0) + raise Exception("unknown storage type " + stype) + + @property + def _num_aux(self): + ''' The number of aux data used to help store the sparse ndarray. + ''' + return len(_STORAGE_AUX_TYPES[self.storage_type]) + + @property + # pylint: disable= invalid-name, undefined-variable + def T(self): + raise Exception('Transpose is not supported for SparseNDArray.') + + @property + def aux_types(self): + """The data types of the aux data for the SparseNDArray. + """ + aux_types = [] + num_aux = self._num_aux + for i in range(num_aux): + aux_types.append(self._aux_type(i)) + return aux_types + + def asnumpy(self): + """Return a dense ``numpy.ndarray`` object with value copied from this array + + """ + return self.to_dense().asnumpy() + + def astype(self, dtype): + raise Exception('Not implemented for SparseND yet!') + + def copyto(self, other): + """Copies the value of this array to another array. + + If ``other`` is a ``NDArray`` object, then ``other.shape`` and + ``self.shape`` should be the same. This function copies the value from + ``self`` to ``other``. + + If ``other`` is a context, a new ``NDArray`` will be first created on + the target context, and the value of ``self`` is copied. + + Parameters + ---------- + other : NDArray or Context + The destination array or context. + + Returns + ------- + NDArray + The copied array. If ``other`` is an ``NDArray``, then the return value + and ``other`` will point to the same ``NDArray``. + """ + if isinstance(other, NDArray): + if other.handle is self.handle: + warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) + return + return _internal._copyto(self, out=other) + elif isinstance(other, Context): + hret = SparseNDArray(_new_alloc_handle(self.storage_type, self.shape, other, + True, self.dtype, self.aux_types)) + return _internal._copyto(self, out=hret) + else: + raise TypeError('copyto does not support type ' + str(type(other))) + + def to_dense(self): + return to_dense(self) + + def _aux_data(self, i, writable=False): + """ Get an NDArray referencing the ith aux data array associated with the SparseNDArray. + """ + self.wait_to_read() + hdl = NDArrayHandle() + check_call(_LIB.MXNDArrayGetAuxNDArray(self.handle, i, ctypes.byref(hdl))) + return NDArray(hdl, writable) + + def _data(self, writable=False): + """ Get an NDArray referencing the value array associated with the SparseNDArray. + """ + self.wait_to_read() + hdl = NDArrayHandle() + check_call(_LIB.MXNDArrayGetDataNDArray(self.handle, ctypes.byref(hdl))) + return NDArray(hdl, writable) + +def _prepare_src_array(src, dtype, default_dtype): + if isinstance(src, NDArray): + dtype = src.dtype if dtype is None else dtype + else: + dtype = default_dtype if dtype is None else dtype + if not isinstance(src, np.ndarray): + try: + src = np.array(src, dtype=dtype) + except: + raise TypeError('values must be array like object') + return src, dtype + +def csr(values, indptr, indices, shape, ctx=None, dtype=None, indptr_type=None, indices_type=None): + """Creates a 2D array with compressed sparse row format. + + A SparseNDArray with `csr` storage represents a NDArray as three separate arrays: `values`, + `indptr` and `indices`. It uses the standard CSR representation where the column indices for + row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored + in values[indptr[i]:indptr[i+1]]. + + Parameters + ---------- + values: array_like + An object exposing the array interface, with shape [nnz], where D0 is the number of + non-zero entries. + indptr: array_like + An object exposing the array interface, with shape [D0 + 1]. The first element in indptr + should always be zero. + indices: array_like + An object exposing the array interface, with shape [nnz]. + ctx : Context, optional + Device context (default is the current default context). + dtype : str or numpy.dtype, optional + The data type of the output array. The default dtype is ``values.dtype`` + if `values` is an `NDArray`, `float32` otherwise. + indptr_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indptr.dtype`` + if `indptr` is an `NDArray`, `int32` otherwise. + indices_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indices.dtype`` + if `indicies` is an `NDArray`, `int32` otherwise. + + Returns + ------- + SparseNDArray + An `SparseNDArray` with the `csr` storage representation. + """ + storage_type = 'csr' + # context + if ctx is None: + ctx = Context.default_ctx + # prepare src array and types + values, dtype = _prepare_src_array(values, dtype, mx_real_t) + indptr, indptr_type = _prepare_src_array(indptr, indptr_type, + _STORAGE_AUX_TYPES[storage_type][0]) + indices, indices_type = _prepare_src_array(indices, indices_type, + _STORAGE_AUX_TYPES[storage_type][1]) + # verify types + assert('int' in str(indptr_type) or 'long' in str(indptr_type)) + assert('int' in str(indices_type) or 'long' in str(indices_type)) + # verify shapes + aux_shapes = [indptr.shape, indices.shape] + assert(values.ndim == 1) + assert(indptr.ndim == 1) + assert(indices.ndim == 1) + assert(len(shape) == 2) + result = SparseNDArray(_new_alloc_handle(storage_type, shape, ctx, False, dtype, + [indptr_type, indices_type], aux_shapes)) + # assign indptr, indices and values + values_ref = result._data(True) + indptr_ref = result._aux_data(0, True) + indices_ref = result._aux_data(1, True) + values_ref[:] = values + indptr_ref[:] = indptr + indices_ref[:] = indices + return result + +def row_sparse(values, indices, shape, ctx=None, dtype=None, indices_type=None): + """Creates a row sparse array with a set of tensor slices at given indices. + + A SparseNDArray with `row_sparse` storage is typically used to represent a subset of a larger + NDArray with `default_storage` of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0. The values + in indices are the indices in the first dimension of the slices that have been extracted from + the larger NDArray. The indices are expected to be sorted in ascending order. + + The corresponding NDArray ``dense`` with `default_storage` represented by a ``rsp`` + SparseNDArray with `row_sparse` storage has + + ``dense[rsp.indices[i], :, :, :, ...] = rsp.values[i, :, :, :, ...]`` + + `row_sparse` SparseNDArray is used principally in the definition of gradients for operations + that have sparse gradients (e.g. SparseEmbedding). + + Parameters + ---------- + values: array_like + An object exposing the array interface, with shape [D0, D1, .. Dn], where D0 is + the number of rows with non-zeros entries. + indices: array_like + An object exposing the array interface, with shape [D0]. + ctx : Context, optional + Device context (default is the current default context). + dtype : str or numpy.dtype, optional + The data type of the output array. The default dtype is ``values.dtype`` + if `values` is an `NDArray`, `float32` otherwise. + indices_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indices.dtype`` + if `indicies` is an `NDArray`, `int32` otherwise. + + Returns + ------- + SparseNDArray + An `SparseNDArray` with the `row_sparse` storage representation. + """ + storage_type = 'row_sparse' + # context + if ctx is None: + ctx = Context.default_ctx + # prepare src array and types + values, dtype = _prepare_src_array(values, dtype, mx_real_t) + indices, indices_type = _prepare_src_array(indices, indices_type, + _STORAGE_AUX_TYPES[storage_type][0]) + # verify types + assert('int' in str(indices_type) or 'long' in str(indices_type)) + # verify shapes + assert(values.ndim == len(shape)) + assert(indices.ndim == 1) + result = SparseNDArray(_new_alloc_handle(storage_type, shape, ctx, False, dtype, + [indices_type], [indices.shape])) + # assign indices and values + values_ref = result._data(True) + indices_ref = result._aux_data(0, True) + values_ref[:] = values + indices_ref[:] = indices + return result + +def to_dense(source): + """ Return a dense array representation of this SparseNDArray. + + Returns + ------- + SparseNDArray + The dense array with default storage + """ + return ndarray.cast_storage(source, storage_type='default_storage') + +def zeros(storage_type, shape, ctx=None, dtype=None, aux_types=None): + """Return a new array of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or tuple of int + The shape of the empty array + storage_type: string + The storage type of the empty array, such as 'row_sparse', 'csr', etc + ctx : Context, optional + An optional device context (default is the current default context) + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`) + aux_types: list of numpy.dtype, optional + An optional type for the aux data for SparseNDArray (default values depends + on the storage type) + + Returns + ------- + SparseNDArray + A created array + Examples + -------- + >>> mx.sparse_nd.zeros('csr', (1,2), mx.gpu(0)) + + >>> mx.sparse_nd.zeros('row_sparse', (1,2), mx.gpu(0), 'float16').asnumpy() + array([[ 0., 0.]], dtype=float16) + """ + if ctx is None: + ctx = Context.default_ctx + dtype = mx_real_t if dtype is None else dtype + if aux_types is None: + if storage_type == 'row_sparse' or storage_type == 'csr': + aux_types = _STORAGE_AUX_TYPES[storage_type] + else: + raise Exception("unknown storage type") + assert(len(aux_types) == len(_STORAGE_AUX_TYPES[storage_type])) + out = SparseNDArray(_new_alloc_handle(storage_type, shape, ctx, True, dtype, aux_types)) + return _internal._zeros(shape=shape, ctx=ctx, dtype=dtype, out=out) + +def _ndarray_cls(handle): + stype = _storage_type(handle) + # TODO(haibin) in the long run, we want to have CSRNDArray and RowSparseNDArray which + # inherit from SparseNDArray + return NDArray(handle) if stype == 'default_storage' else SparseNDArray(handle) + +# pylint: enable=too-many-locals, invalid-name +def _init_ndarray_module(ndarray_class, root_namespace): + """List and add all the ndarray functions to current module.""" + _set_ndarray_class(ndarray_class) + plist = ctypes.POINTER(ctypes.c_char_p)() + size = ctypes.c_uint() + + check_call(_LIB.MXListAllOpNames(ctypes.byref(size), + ctypes.byref(plist))) + op_names = [] + for i in range(size.value): + op_names.append(py_str(plist[i])) + + module_obj = _sys.modules["%s.ndarray" % root_namespace] + module_internal = _sys.modules["%s._ndarray_internal" % root_namespace] + module_contrib = _sys.modules["%s.contrib.ndarray" % root_namespace] + for name in op_names: + hdl = OpHandle() + check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) + function = _make_ndarray_function(hdl, name) + if function.__name__.startswith('_contrib_'): + function.__name__ = function.__name__[9:] + function.__module__ = 'mxnet.contrib.ndarray' + setattr(module_contrib, function.__name__, function) + elif function.__name__.startswith('_'): + setattr(module_internal, function.__name__, function) + else: + setattr(module_obj, function.__name__, function) + +_init_ndarray_module(_ndarray_cls, "mxnet") diff --git a/python/mxnet/symbol.py b/python/mxnet/symbol.py index d09de16facd3..cee08fdfb038 100644 --- a/python/mxnet/symbol.py +++ b/python/mxnet/symbol.py @@ -13,11 +13,13 @@ import numpy as _numpy from .base import _LIB, numeric_types -from .base import c_array, c_str, mx_uint, py_str, string_types, mx_real_t +from .base import c_array, c_str, mx_uint, py_str, string_types from .base import NDArrayHandle, ExecutorHandle, SymbolHandle from .base import check_call, MXNetError from .context import Context, cpu -from .ndarray import NDArray, zeros as _nd_zeros, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP +from .ndarray import _STORAGE_TYPE_ID_TO_STR, _STORAGE_TYPE_STR_TO_ID +from .ndarray import NDArray, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP +from .sparse_ndarray import _ndarray_cls from .executor import Executor from . import _symbol_internal as _internal from .attribute import AttrScope @@ -520,7 +522,7 @@ def list_attr(self, recursive=False): pairs = ctypes.POINTER(ctypes.c_char_p)() f_handle = _LIB.MXSymbolListAttrShallow check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) - return {py_str(pairs[i*2]): py_str(pairs[i*2+1]) for i in range(size.value)} + return {py_str(pairs[i * 2]): py_str(pairs[i * 2 + 1]) for i in range(size.value)} def attr_dict(self): """Recursively gets all attributes from the symbol and its children. @@ -546,8 +548,8 @@ def attr_dict(self): check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) ret = {} for i in range(size.value): - name, key = py_str(pairs[i*2]).split('$') - val = py_str(pairs[i*2+1]) + name, key = py_str(pairs[i * 2]).split('$') + val = py_str(pairs[i * 2 + 1]) if name not in ret: ret[name] = {} ret[name][key] = val @@ -715,6 +717,89 @@ def list_auxiliary_states(self): self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)] + def infer_storage_type(self, *args, **kwargs): + """Infer the storage type of outputs and arguments of given known types of arguments. + + User can either pass in the known types in positional way or keyword argument way. + Tuple of Nones is returned if there is not enough information passed in. + An error will be raised if there is inconsistency found in the known types passed in. + + Parameters + ---------- + *args : + Provide type of arguments in a positional way. + Unknown type can be marked as None + + **kwargs : + Provide keyword arguments of known types. + + Returns + ------- + arg_storage_types : list of numpy.dtype or None + List of types of arguments. + The order is in the same order as list_arguments() + out_storage_types : list of numpy.dtype or None + List of types of outputs. + The order is in the same order as list_outputs() + aux_storage_types : list of numpy.dtype or None + List of types of outputs. + The order is in the same order as list_auxiliary_states() + """ + # pylint: disable=too-many-locals + if len(args) != 0 and len(kwargs) != 0: + raise ValueError('Can only specify known argument \ + types either by positional or kwargs way.') + sdata = [] + if len(args) != 0: + keys = None + for s in args: + if s is not None: + if s not in _STORAGE_TYPE_STR_TO_ID or not isinstance(s, basestring): + raise TypeError('Argument need to be one of '+str(_STORAGE_TYPE_STR_TO_ID)) + sdata.append(_STORAGE_TYPE_STR_TO_ID[s]) + else: + sdata.append(_STORAGE_TYPE_STR_TO_ID['undefined']) + else: + keys = [] + for k, v in kwargs.items(): + if v in _STORAGE_TYPE_STR_TO_ID: + keys.append(c_str(k)) + sdata.append(_STORAGE_TYPE_STR_TO_ID[v]) + arg_storage_type_size = mx_uint() + arg_storage_type_data = ctypes.POINTER(ctypes.c_int)() + out_storage_type_size = mx_uint() + out_storage_type_data = ctypes.POINTER(ctypes.c_int)() + aux_storage_type_size = mx_uint() + aux_storage_type_data = ctypes.POINTER(ctypes.c_int)() + complete = ctypes.c_int() + check_call(_LIB.MXSymbolInferStorageType( + self.handle, + mx_uint(len(sdata)), + c_array(ctypes.c_char_p, keys), + c_array(ctypes.c_int, sdata), + ctypes.byref(arg_storage_type_size), + ctypes.byref(arg_storage_type_data), + ctypes.byref(out_storage_type_size), + ctypes.byref(out_storage_type_data), + ctypes.byref(aux_storage_type_size), + ctypes.byref(aux_storage_type_data), + ctypes.byref(complete))) + if complete.value != 0: + arg_storage_types = [ + _STORAGE_TYPE_ID_TO_STR[arg_storage_type_data[i]] \ + for i in range(arg_storage_type_size.value)] + out_storage_types = [ + _STORAGE_TYPE_ID_TO_STR[out_storage_type_data[i]] \ + for i in range(out_storage_type_size.value)] + aux_storage_types = [ + _STORAGE_TYPE_ID_TO_STR[aux_storage_type_data[i]] \ + for i in range(aux_storage_type_size.value)] + return (arg_storage_types, out_storage_types, aux_storage_types) + else: + return (None, None, None) + # pylint: enable=too-many-locals + + def infer_type(self, *args, **kwargs): """Infers the type of all arguments and all outputs, given the known types for some arguments. @@ -770,7 +855,7 @@ def infer_type(self, *args, **kwargs): if s is not None: s = _numpy.dtype(s).type if s not in _DTYPE_NP_TO_MX: - raise TypeError('Argument need to be one of '+str(_DTYPE_NP_TO_MX)) + raise TypeError('Argument need to be one of ' + str(_DTYPE_NP_TO_MX)) sdata.append(_DTYPE_NP_TO_MX[s]) else: sdata.append(-1) @@ -879,7 +964,7 @@ def infer_shape(self, *args, **kwargs): if len(unknowns) >= 10: unknowns.append('...') break - unknowns.append('%s: %s'%(name, str(shape))) + unknowns.append('%s: %s' % (name, str(shape))) warnings.warn( "Cannot decide shape for the following arguments " + "(0s in shape means unknown dimensions). " + @@ -1006,7 +1091,7 @@ def _infer_shape_impl(self, partial, *args, **kwargs): return (arg_shapes, out_shapes, aux_shapes) else: return (None, None, None) - # pylint: enable=too-many-locals + # pylint: enable=too-many-locals def debug_str(self): """Gets a debug string of symbol. @@ -1154,12 +1239,11 @@ def _get_ndarray_inputs(arg_key, args, arg_names, allow_missing): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') return c_array(NDArrayHandle, arg_handles), arg_arrays - def simple_bind(self, ctx, - grad_req='write', - type_dict=None, - group2ctx=None, - **kwargs): - """Binds current symbol to get an executor, allocate all the arguments needed. + def simple_bind(self, ctx, grad_req='write', type_dict=None, storage_type_dict=None, + group2ctx=None, shared_arg_names=None, shared_exec=None, + shared_buffer=None, **kwargs): + """Bind current symbol to get an executor, allocate all the arguments needed. + Allows specifying data types. This function simplifies the binding procedure. You need to specify only input data shapes. Before binding the executor, the function allocates arguments and auxiliary states @@ -1169,7 +1253,7 @@ def simple_bind(self, ctx, ---------- >>> x = mx.sym.Variable('x') >>> y = mx.sym.FullyConnected(x, num_hidden=4) - >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req=[]) + >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null') >>> exe.forward() [] >>> exe.outputs[0].asnumpy() @@ -1199,9 +1283,26 @@ def simple_bind(self, ctx, type_dict : Dict of str->numpy.dtype Input type dictionary, name->dtype + storage_type_dict : Dict of str->str + Input storage type dictionary, name->storage_type + group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. + shared_arg_names : List of string + The argument names whose `NDArray` of shared_exec can be reused for initializing + the current executor. + + shared_exec : Executor + The executor whose arg_arrays, arg_arrays, grad_arrays, and aux_arrays can be + reused for initializing the current executor. + + shared_buffer : Dict of string to `NDArray` + The dict mapping argument names to the `NDArray` that can be reused for initializing + the current executor. This buffer will be checked for reuse if one argument name + of the current executor is not found in `shared_arg_names`. The `NDArray`s are + expected have default storage type. + kwargs : Dict of str->shape Input shape dictionary, name->shape @@ -1210,47 +1311,187 @@ def simple_bind(self, ctx, executor : mxnet.Executor The generated executor """ - # pylint: disable=too-many-locals - if type_dict is None: - attrs = self.attr_dict() - type_dict = {k: mx_real_t for k in self.list_arguments() - if k not in attrs or '__dtype__' not in attrs[k]} - arg_shapes, _, aux_shapes = self.infer_shape(**kwargs) - arg_types, _, aux_types = self.infer_type(**type_dict) - - if arg_shapes is None or arg_types is None: - raise ValueError("Input node is not complete") - + # data types + num_provided_arg_types = 0 + provided_arg_type_names = ctypes.POINTER(ctypes.c_char_p)() # provided type argument names + provided_arg_type_data = ctypes.POINTER(mx_uint)() # provided types + if type_dict is not None: + provided_arg_type_names = [] + provided_arg_type_data = [] + for k, v in type_dict.items(): + v = _numpy.dtype(v).type + if v in _DTYPE_NP_TO_MX: + provided_arg_type_names.append(c_str(k)) + provided_arg_type_data.append(ctypes.c_int(_DTYPE_NP_TO_MX[v])) + num_provided_arg_types = mx_uint(len(provided_arg_type_names)) + provided_arg_type_names = c_array(ctypes.c_char_p, provided_arg_type_names) + provided_arg_type_data = c_array(ctypes.c_int, provided_arg_type_data) + + # storage types + num_provided_arg_stypes = 0 + # provided storage type argument names + provided_arg_stype_names = ctypes.POINTER(ctypes.c_char_p)() + provided_arg_stype_data = ctypes.POINTER(mx_uint)() # provided storage types + if storage_type_dict is not None: + provided_arg_stype_names = [] + provided_arg_stype_data = [] + for k, v in storage_type_dict.items(): + if v in _STORAGE_TYPE_STR_TO_ID: + provided_arg_stype_names.append(c_str(k)) + provided_arg_stype_data.append(ctypes.c_int(_STORAGE_TYPE_STR_TO_ID[v])) + num_provided_arg_stypes = mx_uint(len(provided_arg_stype_names)) + provided_arg_stype_names = c_array(ctypes.c_char_p, provided_arg_stype_names) + provided_arg_stype_data = c_array(ctypes.c_int, provided_arg_stype_data) + + provided_arg_shape_data = [] # shape data + # argument shape index in sdata, + # e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg + provided_arg_shape_idx = [0] + provided_arg_shape_names = [] # provided argument names + for k, v in kwargs.items(): + # if k not in listed_arguments and k not in listed_aux_states: + # raise ValueError('arg name %s is not valid', k) + if isinstance(v, tuple): + provided_arg_shape_names.append(c_str(k)) + provided_arg_shape_data.extend(v) + provided_arg_shape_idx.append(len(provided_arg_shape_data)) + + provided_req_type_list_len = 0 + provided_grad_req_types = ctypes.POINTER(ctypes.c_char_p)() + provided_grad_req_names = ctypes.POINTER(ctypes.c_char_p)() + if grad_req is not None: + if isinstance(grad_req, string_types): + # use provided_req_type_list_len = 0 to indicate this situation + provided_req_type_list_len = 0 + provided_grad_req_types = [c_str(grad_req)] + elif isinstance(grad_req, list): + if len(grad_req) == 0: + raise RuntimeError('grad_req in simple_bind cannot be an empty list') + provided_grad_req_types = [c_str(item) for item in grad_req] + provided_req_type_list_len = len(provided_grad_req_types) + elif isinstance(grad_req, dict): + if len(grad_req) == 0: + raise RuntimeError('grad_req in simple_bind cannot be an empty dict') + provided_grad_req_names = [] + provided_grad_req_types = [] + for k, v in grad_req.items(): + provided_grad_req_names.append(c_str(k)) + provided_grad_req_types.append(c_str(v)) + provided_grad_req_names = c_array(ctypes.c_char_p, provided_grad_req_names) + provided_req_type_list_len = len(provided_grad_req_types) + provided_grad_req_types = c_array(ctypes.c_char_p, provided_grad_req_types) + + num_ctx_map_keys = mx_uint(0) + ctx_map_keys = ctypes.POINTER(ctypes.c_char_p)() + ctx_map_dev_types = ctypes.POINTER(ctypes.c_int)() + ctx_map_dev_ids = ctypes.POINTER(ctypes.c_int)() if group2ctx is not None: - attr_dict = self.attr_dict() - arg_ctx = [group2ctx.get(attr_dict[name]['__ctx_group__'], ctx) \ - if name in attr_dict and '__ctx_group__' in attr_dict[name] \ - else ctx for name in self.list_arguments()] - aux_ctx = [group2ctx.get(attr_dict[name]['__ctx_group__'], ctx) \ - if name in attr_dict and '__ctx_group__' in attr_dict[name] \ - else ctx for name in self.list_auxiliary_states()] - else: - arg_ctx = [ctx] * len(arg_shapes) - aux_ctx = [ctx] * len(aux_shapes) - - # alloc space - arg_ndarrays = [ - _nd_zeros(shape, dev, dtype=dtype) - for dtype, dev, shape in zip(arg_types, arg_ctx, arg_shapes)] - if grad_req != 'null': - grad_ndarrays = {} - for name, shape, dev, dtype in zip( - self.list_arguments(), arg_shapes, arg_ctx, arg_types): - if not isinstance(grad_req, dict) or grad_req[name] != 'null': - grad_ndarrays[name] = _nd_zeros(shape, dev, dtype=dtype) + ctx_map_keys = [] + ctx_map_dev_types = [] + ctx_map_dev_ids = [] + for key, val in group2ctx.items(): + ctx_map_keys.append(c_str(key)) + ctx_map_dev_types.append(ctypes.c_int(val.device_typeid)) + ctx_map_dev_ids.append(ctypes.c_int(val.device_id)) + num_ctx_map_keys = mx_uint(len(ctx_map_keys)) + ctx_map_keys = c_array(ctypes.c_char_p, ctx_map_keys) + ctx_map_dev_types = c_array(ctypes.c_int, ctx_map_dev_types) + ctx_map_dev_ids = c_array(ctypes.c_int, ctx_map_dev_ids) + + # prepare param names + shared_arg_name_list = [] + if shared_arg_names is not None: + if not isinstance(shared_arg_names, list): + raise ValueError('shared_arg_names in simple_bind must be a list or None') + shared_arg_name_list = [c_str(name) for name in shared_arg_names] + + # prepare shared_buffer + if shared_buffer is None: + shared_buffer_len = mx_uint() + shared_buffer_names = ctypes.POINTER(ctypes.c_char_p)() + shared_buffer_handles = ctypes.POINTER(NDArrayHandle)() else: - grad_ndarrays = None - - aux_ndarrays = [_nd_zeros(shape, dev, dtype=dtype) - for shape, dev, dtype in zip(aux_shapes, aux_ctx, aux_types)] - executor = self.bind(ctx, arg_ndarrays, - grad_ndarrays, grad_req, aux_ndarrays, - group2ctx=group2ctx) + if not isinstance(shared_buffer, dict): + raise ValueError('shared_buffer in simple_bind must be dict or None') + shared_buffer_names = [] + shared_buffer_handles = [] + for k, v in shared_buffer.items(): + assert(v.storage_type == 'default_storage'), \ + "shared_buffer is expected to only contain NDArrays with default storage" + shared_buffer_names.append(c_str(k)) + shared_buffer_handles.append(v.handle) + shared_buffer_names = c_array(ctypes.c_char_p, shared_buffer_names) + shared_buffer_len = mx_uint(len(shared_buffer_handles)) + shared_buffer_handles = c_array(NDArrayHandle, shared_buffer_handles) + + # prepare shared_exec_handle + shared_exec_handle = shared_exec.handle if shared_exec is not None else ExecutorHandle() + + # prepare current executor handle + exe_handle = ExecutorHandle() + + # prepare current executor's in_args, arg_grads, and aux_states + num_in_args = ctypes.c_uint() + in_arg_handles = ctypes.POINTER(NDArrayHandle)() + arg_grad_handles = ctypes.POINTER(NDArrayHandle)() + num_aux_states = ctypes.c_uint() + aux_state_handles = ctypes.POINTER(NDArrayHandle)() + + check_call(_LIB.MXExecutorSimpleBind(self.handle, + ctypes.c_int(ctx.device_typeid), + ctypes.c_int(ctx.device_id), + num_ctx_map_keys, + ctx_map_keys, + ctx_map_dev_types, + ctx_map_dev_ids, + mx_uint(provided_req_type_list_len), + provided_grad_req_names, + provided_grad_req_types, + mx_uint(len(provided_arg_shape_names)), + c_array(ctypes.c_char_p, provided_arg_shape_names), + c_array(mx_uint, provided_arg_shape_data), + c_array(mx_uint, provided_arg_shape_idx), + num_provided_arg_types, + provided_arg_type_names, + provided_arg_type_data, + num_provided_arg_stypes, + provided_arg_stype_names, + provided_arg_stype_data, + mx_uint(len(shared_arg_name_list)), + c_array(ctypes.c_char_p, shared_arg_name_list), + ctypes.byref(shared_buffer_len), + ctypes.byref(shared_buffer_names), + ctypes.byref(shared_buffer_handles), + ctypes.byref(num_in_args), + ctypes.byref(in_arg_handles), + ctypes.byref(arg_grad_handles), + ctypes.byref(num_aux_states), + ctypes.byref(aux_state_handles), + shared_exec_handle, + ctypes.byref(exe_handle))) + + # update shared_buffer + if shared_buffer is not None: + updated_shared_buffer = [NDArray(NDArrayHandle(shared_buffer_handles[i])) + for i in range(shared_buffer_len.value)] + updated_shared_buffer_names = [py_str(shared_buffer_names[i]) + for i in range(shared_buffer_len.value)] + for k, v in zip(updated_shared_buffer_names, updated_shared_buffer): + shared_buffer[k] = v + + # create in_args, arg_grads, and aux_states for the current executor + arg_arrays = [_ndarray_cls(NDArrayHandle(in_arg_handles[i])) \ + for i in range(num_in_args.value)] + grad_arrays = [_ndarray_cls(NDArrayHandle(arg_grad_handles[i])) + if arg_grad_handles[i] is not None + else None for i in range(num_in_args.value)] + aux_arrays = [_ndarray_cls(NDArrayHandle(aux_state_handles[i])) + for i in range(num_aux_states.value)] + + executor = Executor(exe_handle, self, ctx, grad_req, group2ctx) + executor.arg_arrays = arg_arrays + executor.grad_arrays = grad_arrays + executor.aux_arrays = aux_arrays return executor def bind(self, ctx, args, args_grad=None, grad_req='write', @@ -1435,6 +1676,7 @@ def grad(self, wrt): c_wrt, ctypes.byref(handle))) return Symbol(handle) + # pylint: enable= no-member def eval(self, ctx=cpu(), **kwargs): @@ -1494,8 +1736,8 @@ def reshape(self, shape): """ return reshape(self, shape=shape) - -def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, init=None, **kwargs): +def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, + init=None, storage_type=None, **kwargs): """Creates a symbolic variable with specified name. Example usage: @@ -1549,6 +1791,8 @@ def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, ini if not isinstance(init, string_types): init = init.dumps() attr['__init__'] = init + if storage_type is not None: + attr['__storage_type__'] = str(_STORAGE_TYPE_STR_TO_ID[storage_type]) for k, v in kwargs.items(): if k.startswith('__') and k.endswith('__'): attr[k] = str(v) @@ -1559,9 +1803,11 @@ def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, ini ret._set_attr(**attr) return ret + # for back compatibility Variable = var + def Group(symbols): """Creates a symbol that contains a collection of other symbols, grouped together. @@ -1654,6 +1900,7 @@ def load_json(json_str): # Initialize the atomic symbol in startups _init_symbol_module(Symbol, "mxnet") + # pylint: disable=no-member # pylint: disable=redefined-builtin def pow(base, exp): diff --git a/python/mxnet/test_utils.py b/python/mxnet/test_utils.py index 6089edae5a56..c8a90aff1904 100644 --- a/python/mxnet/test_utils.py +++ b/python/mxnet/test_utils.py @@ -10,8 +10,10 @@ import os import errno import logging +import scipy as sp import numpy as np import numpy.testing as npt +import numpy.random as rnd import mxnet as mx from .context import Context from .ndarray import array @@ -65,6 +67,39 @@ def random_arrays(*shapes): return arrays[0] return arrays +# TODO(haibin) also include types in arguments +def rand_sparse_ndarray(shape, storage_type, density=None): + """Generate a random sparse ndarray. Returns the ndarray, value(np) and indices(np) """ + density = rnd.rand() if density is None else density + if storage_type == 'row_sparse': + # TODO(haibin) support high dim sparse ndarray + assert(len(shape) < 3) + prod = np.prod(shape) + num_cols = int(prod / shape[0]) + # sample index + idx_sample = rnd.rand(shape[0]) + indices = np.argwhere(idx_sample < density).flatten() + if indices.shape[0] == 0: + result = mx.sparse_nd.zeros('row_sparse', shape) + return result, (np.array([]), np.array([], dtype='int32')) + # generate random values + val = rnd.rand(indices.shape[0], num_cols) + arr = mx.sparse_nd.row_sparse(val, indices, shape, indices_type=np.int32) + return arr, (val, indices) + elif storage_type == 'csr': + assert(len(shape) == 2) + csr = sp.sparse.rand(shape[0], shape[1], density=density, format='csr') + result = mx.sparse_nd.csr(csr.data, csr.indptr, csr.indices, shape) + return result, (csr.indptr, csr.indices, csr.data) + else: + assert(False), "unknown storage type" + +def rand_ndarray(shape, storage_type, density=None): + if storage_type == 'default_storage': + arr = mx.nd.array(random_arrays(shape)) + else: + arr, _ = rand_sparse_ndarray(shape, storage_type, density=density) + return arr def np_reduce(dat, axis, keepdims, numpy_reduce_func): """Compatible reduce for old version of NumPy. @@ -297,7 +332,8 @@ def _parse_location(sym, location, ctx): % (str(set(sym.list_arguments())), str(set(location.keys())))) else: location = {k: v for k, v in zip(sym.list_arguments(), location)} - location = {k: mx.nd.array(v, ctx=ctx) for k, v in location.items()} + location = {k: mx.nd.array(v, ctx=ctx) if isinstance(v, np.ndarray) \ + else v for k, v in location.items()} return location @@ -588,8 +624,8 @@ def check_symbolic_forward(sym, location, expected, rtol=1E-4, atol=None, g[:] = 0 executor.forward(is_train=False) - outputs = [x.asnumpy() for x in executor.outputs] + outputs = [x.asnumpy() for x in executor.outputs] for output_name, expect, output in zip(sym.list_outputs(), expected, outputs): assert_almost_equal(expect, output, rtol, atol, ("EXPECTED_%s"%output_name, "FORWARD_%s"%output_name)) @@ -657,14 +693,29 @@ def check_symbolic_backward(sym, location, out_grads, expected, rtol=1e-5, atol= if isinstance(expected, (list, tuple)): expected = {k:v for k, v in zip(sym.list_arguments(), expected)} args_grad_npy = {k:_rng.normal(size=v.shape) for k, v in expected.items()} - args_grad_data = {k: mx.nd.array(v, ctx=ctx) for k, v in args_grad_npy.items()} + # args_grad_data should be casted to storage type if hinted + # TODO(haibin) this is a temporary solution for testing. remove later + attrs = sym.attr_dict() + args_grad_data = {} + for k, v in args_grad_npy.items(): + attr = attrs.get(k, {}) + grad_stype = attr.get('grad_stype_hint', None) + nd = mx.nd.array(v, ctx=ctx) + if grad_stype is not None: + out = mx.nd.cast_storage(nd, storage_type=grad_stype) + args_grad_data[k] = out + else: + args_grad_data[k] = nd + if isinstance(grad_req, str): grad_req = {k:grad_req for k in sym.list_arguments()} elif isinstance(grad_req, (list, tuple)): grad_req = {k:v for k, v in zip(sym.list_arguments(), grad_req)} - executor = sym.bind(ctx=ctx, args=location, args_grad=args_grad_data, aux_states=aux_states) + executor = sym.bind(ctx=ctx, args=location, args_grad=args_grad_data, + aux_states=aux_states, grad_req=grad_req) executor.forward(is_train=True) + if isinstance(out_grads, (tuple, list)): out_grads = [mx.nd.array(v, ctx=ctx) for v in out_grads] elif isinstance(out_grads, (dict)): diff --git a/src/c_api/c_api.cc b/src/c_api/c_api.cc index ae7af5bad129..ccddc03a8e29 100644 --- a/src/c_api/c_api.cc +++ b/src/c_api/c_api.cc @@ -154,6 +154,39 @@ int MXNDArrayCreateEx(const mx_uint *shape, API_END(); } +int MXNDArrayCreateSparseEx(int storage_type, + const mx_uint *shape, + mx_uint ndim, + int dev_type, + int dev_id, + int delay_alloc, + int dtype, + mx_uint num_aux, + int *aux_type, + mx_uint *aux_ndims, + const mx_uint *aux_shape, + NDArrayHandle *out) { + API_BEGIN(); + std::vector aux_types; + std::vector aux_shapes; + auto shape_start = aux_shape; + for (size_t i = 0; i < num_aux; i++) { + // types + aux_types.push_back(aux_type[i]); + // shapes + aux_shapes.emplace_back(shape_start, shape_start + aux_ndims[i]); + shape_start += aux_ndims[i]; + } + *out = new NDArray( + NDArrayStorageType(storage_type), + TShape(shape, shape + ndim), + Context::Create(static_cast(dev_type), dev_id), + delay_alloc != 0, + dtype, aux_types, aux_shapes); + API_END(); +} + + int MXNDArrayLoadFromRawBytes(const void *buf, size_t size, NDArrayHandle *out) { @@ -287,6 +320,16 @@ int MXNDArraySlice(NDArrayHandle handle, API_END_HANDLE_ERROR(delete ptr); } +int MXNDArraySliceEx(NDArrayHandle handle, + mx_uint slice_begin, + mx_uint slice_end, + NDArrayHandle out) { + NDArray *ptr = static_cast(out); + API_BEGIN(); + static_cast(handle)->SliceEx(slice_begin, slice_end, ptr); + API_END(); +} + int MXNDArrayAt(NDArrayHandle handle, mx_uint idx, NDArrayHandle *out) { @@ -333,6 +376,18 @@ MXNET_DLL int MXNDArrayReshape(NDArrayHandle handle, API_END_HANDLE_ERROR(delete ptr); } +int MXNDArrayGetStorageType(NDArrayHandle handle, + int *out_storage_type) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + if (!arr->is_none()) { + *out_storage_type = arr->storage_type(); + } else { + *out_storage_type = kUndefinedStorage; + } + API_END(); +} + int MXNDArrayGetShape(NDArrayHandle handle, mx_uint *out_dim, const mx_uint **out_pdata) { @@ -378,6 +433,32 @@ int MXNDArrayGetDType(NDArrayHandle handle, API_END(); } +int MXNDArrayGetAuxType(NDArrayHandle handle, + mx_uint i, + int *out_type) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out_type = arr->aux_type(i); + API_END(); +} + +int MXNDArrayGetAuxNDArray(NDArrayHandle handle, + mx_uint i, + NDArrayHandle *out) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out = new NDArray(arr->aux_ndarray(i)); + API_END(); +} + +int MXNDArrayGetDataNDArray(NDArrayHandle handle, + NDArrayHandle *out) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out = new NDArray(arr->data_ndarray()); + API_END(); +} + int MXNDArrayGetContext(NDArrayHandle handle, int *out_dev_type, int *out_dev_id) { diff --git a/src/c_api/c_api_common.h b/src/c_api/c_api_common.h index e2e739ae62a4..27bce311f980 100644 --- a/src/c_api/c_api_common.h +++ b/src/c_api/c_api_common.h @@ -58,6 +58,8 @@ struct MXAPIThreadLocalEntry { std::vector arg_shapes, out_shapes, aux_shapes; /*! \brief result holder for returning type flags */ std::vector arg_types, out_types, aux_types; + /*! \brief result holder for returning storage types */ + std::vector arg_storage_types, out_storage_types, aux_storage_types; /*! \brief result holder for returning shape dimensions */ std::vector arg_shape_ndim, out_shape_ndim, aux_shape_ndim; /*! \brief result holder for returning shape pointer */ diff --git a/src/c_api/c_api_executor.cc b/src/c_api/c_api_executor.cc index ce765acd77bf..aae7fe5e3c9f 100644 --- a/src/c_api/c_api_executor.cc +++ b/src/c_api/c_api_executor.cc @@ -154,6 +154,332 @@ int MXExecutorBindEX(SymbolHandle symbol_handle, API_END_HANDLE_ERROR(delete exec); } +/*! + * \brief + * \param symbol_handle symbol handle + * \param dev_type default device type + * \param dev_id default device id + * \param num_g2c_keys number of group2ctx keys + * \param g2c_keys key list of group2ctx + * \param g2c_dev_types device type list of group2ctx + * \param g2c_dev_ids id list of group2ctx + * \param provided_grad_req_list_len grad_req length provided by users in front-end + * \param provided_grad_req_names grad_req names provided by users in front-end + * \param provided_grad_req_types req types provided by users in front-end + * \param num_provided_arg_shapes number of user provided in_arg and aux_state shapes + * \param provided_arg_shape_names name list of provided shapes + * \param provided_arg_shape_data provided shape data + * \param provided_arg_shape_idx provided shape data index + * \param num_provided_arg_dtypes number of user provided in_arg and axu_state dtypes + * \param provided_arg_dtype_names argument name list of provided dtypes + * \param provided_arg_dtypes data of provided dtypes + * \param num_provided_arg_stypes number of user provided in_arg and axu_state storage types + * \param provided_arg_stype_names argument name list of provided storage types + * \param provided_arg_stypes data of provided storage types + * \param num_shared_arg_names number of parameter names passed from _bind_ith_exec + * \param shared_arg_name_list parameter name list passed from _bind_ith_exec + * \param shared_buffer_len number of shared data arrays passed from _bind_ith_exec + * \param shared_buffer_name_list shared data array names passed from _bind_ith_exec + * \param shared_buffer_handle_list shared data array handles passed from _bind_ith_exec + * \param num_in_args number of input arguments of this sym + * \param in_args list_arguments associated with the current executor + * \param arg_grads list of gradients of in_args associated with the current executor + * \param num_aux_states number of aux states of this sym + * \param aux_states list_auxiliary_states associated with the current executor + * \param shared_exec_handle shared excutor handle passed from _bind_ith_exec + * \param out the handle of the executor to be created + */ +int MXExecutorSimpleBind(SymbolHandle symbol_handle, + int dev_type, + int dev_id, + const mx_uint num_g2c_keys, + const char** g2c_keys, + const int* g2c_dev_types, + const int* g2c_dev_ids, + const mx_uint provided_grad_req_list_len, + const char** provided_grad_req_names, + const char** provided_grad_req_types, + const mx_uint num_provided_arg_shapes, + const char** provided_arg_shape_names, + const mx_uint* provided_arg_shape_data, + const mx_uint* provided_arg_shape_idx, + const mx_uint num_provided_arg_dtypes, + const char** provided_arg_dtype_names, + const int* provided_arg_dtypes, + const mx_uint num_provided_arg_stypes, + const char** provided_arg_stype_names, + const int* provided_arg_stypes, + const mx_uint num_shared_arg_names, + const char** shared_arg_name_list, + mx_uint* shared_buffer_len, + const char*** shared_buffer_name_list, + NDArrayHandle** shared_buffer_handle_list, + mx_uint* num_in_args, + NDArrayHandle** in_args, + NDArrayHandle** arg_grads, + mx_uint* num_aux_states, + NDArrayHandle** aux_states, + ExecutorHandle shared_exec_handle, + ExecutorHandle* out) { + MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); + API_BEGIN(); + nnvm::Symbol *sym = static_cast(symbol_handle); + + // get in_arg names + std::vector in_arg_names = sym->ListInputNames(nnvm::Symbol::kReadOnlyArgs); + std::vector aux_state_names = sym->ListInputNames(nnvm::Symbol::kAuxiliaryStates); + + // attr_dict for setting up type_dict and arg/aux ctx + std::unordered_map> attr_dict; + if (nullptr == provided_arg_dtypes || nullptr == g2c_keys) { + std::vector> attrs = + sym->ListAttrsRecursive(); + attr_dict.reserve(attrs.size()); + for (const auto& tp : attrs) { + attr_dict[std::get<0>(tp)][std::get<1>(tp)] = std::get<2>(tp); + } + } + + // setup arg_dtype_map + std::unordered_map arg_dtype_map; + if (nullptr == provided_arg_dtypes) { // use attr_dict + for (const auto& arg_name : in_arg_names) { + const auto it = attr_dict.find(arg_name); + if (it == attr_dict.end() || !it->second.count("__dtype__")) { + arg_dtype_map[arg_name] = mshadow::kFloat32; + } + } + } else { // use user input type_dict + // create dtype map for in_args and aux_states + arg_dtype_map.reserve(num_provided_arg_dtypes); + for (mx_uint i = 0; i < num_provided_arg_dtypes; ++i) { + arg_dtype_map[provided_arg_dtype_names[i]] = provided_arg_dtypes[i]; + } + } + + // setup arg_stype_map + std::unordered_map arg_stype_map; + if (nullptr == provided_arg_stypes) { // use attr_dict + for (const auto& arg_name : in_arg_names) { + const auto it = attr_dict.find(arg_name); + if (it == attr_dict.end() || !it->second.count("__storage_type__")) { + arg_stype_map[arg_name] = kDefaultStorage; + } + } + } else { // use user input type_dict + // create stype map for in_args and aux_states + arg_stype_map.reserve(num_provided_arg_stypes); + for (mx_uint i = 0; i < num_provided_arg_stypes; ++i) { + arg_stype_map[provided_arg_stype_names[i]] = provided_arg_stypes[i]; + } + } + + // create default ctx + Context ctx = Context::Create(static_cast(dev_type), dev_id); + // create ctx map + std::map ctx_map; + std::vector in_arg_ctx_vec(in_arg_names.size(), ctx); + std::vector aux_state_ctx_vec(aux_state_names.size(), ctx); + if (nullptr != g2c_keys) { // use user input group2ctx dict + for (mx_uint i = 0; i < num_g2c_keys; ++i) { + ctx_map[g2c_keys[i]] = Context::Create( + static_cast(g2c_dev_types[i]), g2c_dev_ids[i]); + } + + // initialize in_arg_ctx_vec using group2ctx if there are any + for (size_t i = 0; i < in_arg_ctx_vec.size(); ++i) { + const auto it1 = attr_dict.find(in_arg_names[i]); + if (it1 != attr_dict.end()) { + const auto it2 = it1->second.find("__ctx_group__"); + if (it2 != it1->second.end()) { + const auto it3 = ctx_map.find(it2->second); + if (it3 != ctx_map.end()) { + in_arg_ctx_vec[i] = it3->second; + } + } + } + } + + // initialize aux_state_ctx_vec using group2ctx if there are any + for (size_t i = 0; i < aux_state_ctx_vec.size(); ++i) { + const auto it1 = attr_dict.find(aux_state_names[i]); + if (it1 != attr_dict.end()) { + const auto it2 = it1->second.find("__ctx_group__"); + if (it2 != it1->second.end()) { + const auto it3 = ctx_map.find(it2->second); + if (it3 != ctx_map.end()) { + aux_state_ctx_vec[i] = it3->second; + } + } + } + } + } + + // create provided_grad_req_map + const std::map req_map = + {{"null", kNullOp}, {"write", kWriteTo}, {"add", kAddTo}}; + std::unordered_map provided_grad_req_map; + std::string grad_req_type; + if (0 == provided_grad_req_list_len + && nullptr == provided_grad_req_names + && nullptr != provided_grad_req_types) { // string, grad_req='write' + CHECK_EQ(req_map.count(provided_grad_req_types[0]), 1U) + << "grad_req=" << provided_grad_req_types[0] << " is not a valid input in simple_bind; " + "only \'null\', \'write\', and \'add\' are supported"; + grad_req_type = "string"; + } else if (provided_grad_req_list_len > 0 + && nullptr == provided_grad_req_names + && nullptr != provided_grad_req_types) { // list, grad_req=['null', 'write'] + grad_req_type = "list"; + CHECK_EQ(provided_grad_req_list_len, in_arg_names.size()) + << "The length of grad_req list does not match the number of input arguments in simple_bind, " + "expected " << in_arg_names.size() << ", provided " << provided_grad_req_list_len; + } else if (provided_grad_req_list_len > 0 + && nullptr != provided_grad_req_names + && nullptr != provided_grad_req_types) { // dict, grad_req=['lhs': 'null', 'rhs': 'write'] + grad_req_type = "dict"; + provided_grad_req_map.reserve(provided_grad_req_list_len); + for (mx_uint i = 0; i < provided_grad_req_list_len; ++i) { + CHECK_EQ(req_map.count(provided_grad_req_types[i]), 1U) + << "grad_req=" << provided_grad_req_types[i] << " is not a valid input in simple_bind; " + "only \'null\', \'write\', and \'add\' are supported"; + provided_grad_req_map[provided_grad_req_names[i]] = provided_grad_req_types[i]; + } + } else { // grad_req is None + grad_req_type = "none"; + } + + // initialize arg_grad_ctx_vec and grad_req_type_vec + std::vector arg_grad_ctx_vec(in_arg_names.size(), ctx); + std::vector grad_req_type_vec(in_arg_names.size(), kNullOp); + if ("none" != grad_req_type) { + for (size_t i = 0; i < in_arg_names.size(); ++i) { + OpReqType cur_req = kNullOp; + if ("string" == grad_req_type) { + cur_req = req_map.at(provided_grad_req_types[0]); + } else if ("list" == grad_req_type) { + CHECK_EQ(req_map.count(provided_grad_req_types[i]), 1U) + << "grad_req=" << provided_grad_req_types[i] << " is not a valid input in simple_bind; " + "only \'null\', \'write\', and \'add\' are supported"; + cur_req = req_map.at(provided_grad_req_types[i]); + } else if ("dict" == grad_req_type) { + const auto it = provided_grad_req_map.find(in_arg_names[i]); + if (it != provided_grad_req_map.end()) { + cur_req = req_map.at(it->second); + } + } + if (kNullOp != cur_req) { + arg_grad_ctx_vec[i] = in_arg_ctx_vec[i]; + grad_req_type_vec[i] = static_cast(cur_req); + } + } + } + + // create shape map for in_args and aux_states + std::unordered_map arg_shape_map(num_provided_arg_shapes); + for (mx_uint i = 0; i < num_provided_arg_shapes; ++i) { + auto p = arg_shape_map.emplace(provided_arg_shape_names[i], + TShape(provided_arg_shape_data+provided_arg_shape_idx[i], + provided_arg_shape_data+provided_arg_shape_idx[i+1])); + CHECK(p.second) << "Duplicate shapes are provided for argument " + << provided_arg_shape_names[i] << " in simple_bind"; + } + + // create para name set for sharing data array memory + std::unordered_set shared_arg_name_set(num_shared_arg_names); + for (mx_uint i = 0; i < num_shared_arg_names; ++i) { + shared_arg_name_set.insert(shared_arg_name_list[i]); + } + + // create shared_buffer_map + std::unordered_map shared_buffer_map; + std::vector shared_exec_in_args; + std::vector shared_exec_arg_grads; + std::vector shared_exec_aux_states; + bool use_shared_buffer = (nullptr != *shared_buffer_handle_list); + if (use_shared_buffer) { + // create shared_buffer_map + shared_buffer_map.reserve(*shared_buffer_len); + NDArray*** shared_buffer_ptrs = + reinterpret_cast(shared_buffer_handle_list); + for (mx_uint i = 0; i < *shared_buffer_len; ++i) { + shared_buffer_map[*shared_buffer_name_list[i]] = *(*shared_buffer_ptrs)[i]; + } + } + + // create temporary place holders for the initialized NDArrays + // to be passed back to front end + std::vector in_arg_vec; + std::vector arg_grad_vec; + std::vector aux_state_vec; + + *out = Executor::SimpleBind(*sym, ctx, ctx_map, in_arg_ctx_vec, arg_grad_ctx_vec, + aux_state_ctx_vec, arg_shape_map, arg_dtype_map, arg_stype_map, + grad_req_type_vec, shared_arg_name_set, &in_arg_vec, + &arg_grad_vec, &aux_state_vec, + use_shared_buffer ? &shared_buffer_map : nullptr, + reinterpret_cast(shared_exec_handle)); + + // copy ndarray ptrs to ret->handles so that front end + // can access them + ret->ret_handles.clear(); + ret->ret_handles.reserve(in_arg_vec.size()+arg_grad_vec.size()+aux_state_vec.size() + +shared_buffer_map.size()); + size_t nd_idx = 0; + for (const auto& nd : in_arg_vec) { + if (nd.is_none()) { + LOG(FATAL) << "Input argument NDArray cannot be un-allocated"; + } + ret->ret_handles.push_back(new NDArray(nd)); + } + if (in_arg_vec.size() > 0) { + *num_in_args = in_arg_vec.size(); + *in_args = &(ret->ret_handles[nd_idx]); + nd_idx = ret->ret_handles.size(); + } + + for (const auto& nd : arg_grad_vec) { + if (nd.is_none()) { + ret->ret_handles.push_back(nullptr); + } else { + ret->ret_handles.push_back(new NDArray(nd)); + } + } + if (arg_grad_vec.size() > 0) { + *arg_grads = &(ret->ret_handles[nd_idx]); + nd_idx = ret->ret_handles.size(); + } + + for (const auto& nd : aux_state_vec) { + if (nd.is_none()) { + LOG(FATAL) << "Auxiliary argument NDArray cannot be un-allocated"; + } + ret->ret_handles.push_back(new NDArray(nd)); + } + if (aux_state_vec.size() > 0) { + *num_aux_states = aux_state_vec.size(); + *aux_states = &(ret->ret_handles[nd_idx]); + nd_idx = ret->ret_handles.size(); + } + + if (use_shared_buffer) { + ret->ret_vec_charp.clear(); + ret->ret_vec_charp.reserve(shared_buffer_map.size()); + for (const auto kv : shared_buffer_map) { + if (kv.second.is_none()) { + LOG(FATAL) << "Shared data NDArray cannot be un-allocated"; + } + ret->ret_handles.push_back(new NDArray(kv.second)); + ret->ret_vec_charp.push_back(kv.first.c_str()); + } + *shared_buffer_len = shared_buffer_map.size(); + *shared_buffer_handle_list = &(ret->ret_handles[nd_idx]); + *shared_buffer_name_list = &(ret->ret_vec_charp[0]); + } + + API_END(); +} + int MXExecutorSetMonitorCallback(ExecutorHandle handle, ExecutorMonitorCallback callback, void* callback_handle) { diff --git a/src/c_api/c_api_ndarray.cc b/src/c_api/c_api_ndarray.cc index c633e8609cd4..9db999406a0d 100644 --- a/src/c_api/c_api_ndarray.cc +++ b/src/c_api/c_api_ndarray.cc @@ -1,6 +1,6 @@ /*! * Copyright (c) 2016 by Contributors - * \file c_api_symbolic.cc + * \file c_api_ndarray.cc * \brief C API of mxnet */ @@ -16,6 +16,8 @@ #include "../common/utils.h" #include "../ndarray/autograd.h" +#define IMPERATIVE_EXEC_DEBUG 0 + using namespace mxnet; using mxnet::autograd::AutogradRuntime; @@ -121,16 +123,18 @@ void SetContext(Context* p_ctx, ctx = Context::CPU(); } } - +// Set the shape, dtype and storage type void SetShapeType(const nnvm::Op* op, const nnvm::NodeAttrs& attrs, const Context& ctx, const std::vector& ndinputs, const int& infered_num_outputs, - std::vector* p_ndoutputs) { + std::vector* p_ndoutputs, + int* dispatch_stype) { std::vector& ndoutputs = *p_ndoutputs; static auto& infershape = nnvm::Op::GetAttr("FInferShape"); static auto& infertype = nnvm::Op::GetAttr("FInferType"); + static auto& inferstorage = nnvm::Op::GetAttr("FInferStorageType"); MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); // infer shape std::vector& in_shapes = ret->arg_shapes; @@ -166,9 +170,41 @@ void SetShapeType(const nnvm::Op* op, CHECK(infertype[op](attrs, &in_types, &out_types)); CHECK_EQ(out_types.size(), static_cast(infered_num_outputs)); + // infer storage type + auto& in_storage_types = ret->arg_storage_types; + auto& out_storage_types = ret->out_storage_types; + in_storage_types.clear(); + out_storage_types.clear(); + + for (auto& i : ndinputs) { + in_storage_types.push_back(i.storage_type()); + } + for (auto& i : ndoutputs) { + out_storage_types.push_back(i.storage_type()); + } + if (inferstorage.count(op)) { + CHECK(inferstorage[op](attrs, &in_storage_types, &out_storage_types)); + CHECK_EQ(out_storage_types.size(), static_cast(infered_num_outputs)); + } else { +#if IMPERATIVE_EXEC_DEBUG + LOG(INFO) << "FInferStorageType not present."; +#endif + } + + bool contains_non_default = common::ContainsNonDefaultStorage(in_storage_types); + contains_non_default |= common::ContainsNonDefaultStorage(out_storage_types); + int kNonDefaultStorage = -2; + *dispatch_stype = contains_non_default ? kNonDefaultStorage : kDefaultStorage; + for (int i = 0; i < infered_num_outputs; ++i) { + NDArrayStorageType storage_type = static_cast(out_storage_types[i]); if (ndoutputs[i].is_none()) { - ndoutputs[i] = NDArray(out_shapes[i], ctx, true, out_types[i]); + // If failed to infer the storage type, assume the output storage is dense + if (storage_type == kDefaultStorage || out_storage_types[i] == kUndefinedStorage) { + ndoutputs[i] = NDArray(out_shapes[i], ctx, true, out_types[i]); + } else { + ndoutputs[i] = NDArray(storage_type, out_shapes[i], ctx, true, out_types[i]); + } } else { CHECK_EQ(ndoutputs[i].shape(), out_shapes[i]) << i << "th output has invalid shape. " @@ -215,23 +251,20 @@ void SetDependency(std::vector *p_read_vars, } CHECK_LE(ntmp, 1) << "Only support 1 temp space request"; } - - for (auto& i : ndinputs) { - read_vars.push_back(i.var()); - } - for (auto& i : ndoutputs) { - write_vars.push_back(i.var()); - } + for (auto& i : ndinputs) read_vars.emplace_back(i.var()); + for (auto& i : ndoutputs) write_vars.emplace_back(i.var()); if (mutate.count(op)) { auxidx = mutate[op](attrs); std::sort(auxidx.begin(), auxidx.end()); - for (auto & i : auxidx) { - write_vars.push_back(ndinputs[i].var()); + for (auto& i : auxidx) { + auto var = ndinputs[i].var(); + write_vars.push_back(var); } } Engine::Get()->DeduplicateVarHandle(&read_vars, &write_vars); } + void PushFCompute(const FCompute& fn, const nnvm::Op* op, const nnvm::NodeAttrs& attrs, @@ -247,15 +280,21 @@ void PushFCompute(const FCompute& fn, RunContext rctx, engine::CallbackOnComplete on_complete) { std::vector input_blobs, output_blobs; - for (auto& i : ndinputs) { - input_blobs.push_back(i.data()); - } - for (auto& i : ndoutputs) { - output_blobs.push_back(i.data()); - } + std::vector tmps; OpContext opctx{is_train, rctx, engine::CallbackOnComplete(), requested}; + if (ctx.dev_mask() == gpu::kDevMask) { +#if MXNET_USE_CUDA + common::GetInputBlobs(ndinputs, &input_blobs, &tmps, opctx); + common::GetOutputBlobs(ndoutputs, &output_blobs); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + common::GetInputBlobs(ndinputs, &input_blobs, &tmps, opctx); + common::GetOutputBlobs(ndoutputs, &output_blobs); + } std::vector req(output_blobs.size(), kWriteTo); fn(attrs, opctx, input_blobs, req, output_blobs); if (ctx.dev_mask() == gpu::kDevMask) { @@ -266,6 +305,33 @@ void PushFCompute(const FCompute& fn, 0, PROFILER_MESSAGE(op->name.c_str())); } +void PushFComputeEx(const FComputeEx& fn, + const nnvm::Op* op, + const nnvm::NodeAttrs& attrs, + const Context& ctx, + const std::vector& read_vars, + const std::vector& write_vars, + const std::vector& requested, + const std::vector& ndinputs, + const std::vector& ndoutputs) { + Engine::Get()->PushAsync( + [ctx, attrs, fn, ndinputs, ndoutputs, requested]( + RunContext rctx, + engine::CallbackOnComplete on_complete) { + std::vector input_blobs, output_blobs; + OpContext opctx{false, rctx, + engine::CallbackOnComplete(), + requested}; + std::vector req(ndoutputs.size(), kWriteTo); + fn(attrs, opctx, ndinputs, req, ndoutputs); + if (ctx.dev_mask() == gpu::kDevMask) { + rctx.get_stream()->Wait(); + } + on_complete(); + }, ctx, read_vars, write_vars, FnProperty::kNormal, + 0, PROFILER_MESSAGE(op->name.c_str())); +} + void PushOperator(std::shared_ptr opr, const nnvm::Op* op, const nnvm::NodeAttrs& attrs, @@ -329,8 +395,6 @@ int MXImperativeInvoke(AtomicSymbolCreator creator, int num_params, const char **param_keys, const char **param_vals) { - static auto& fcpu = nnvm::Op::GetAttr("FCompute"); - static auto& fgpu = nnvm::Op::GetAttr("FCompute"); static auto& ndfunc = nnvm::Op::GetAttr("FNDArrayFunction"); static auto& createop = nnvm::Op::GetAttr("FCreateLayerOp"); const nnvm::Op* op = static_cast(creator); @@ -344,20 +408,23 @@ int MXImperativeInvoke(AtomicSymbolCreator creator, int infered_num_outputs; int num_visible_outputs; - SetNumOutputs(op, attrs, num_inputs, - &infered_num_outputs, &num_visible_outputs); + SetNumOutputs(op, attrs, num_inputs, &infered_num_outputs, &num_visible_outputs); std::vector ndinputs, ndoutputs; SetNDInputsOutputs(op, &ndinputs, &ndoutputs, num_inputs, inputs, - num_outputs, infered_num_outputs, num_visible_outputs, outarray); + num_outputs, infered_num_outputs, num_visible_outputs, outarray); if (ndfunc.count(op)) { ndfunc[op](attrs, ndinputs, &ndoutputs); +#if IMPERATIVE_EXEC_DEBUG + LOG(INFO) << "NDArray function executed."; +#endif } else { // TODO(piiswrong): infer ctx Context ctx; + int storage_type; SetContext(&ctx, attrs, num_inputs, ndinputs, infered_num_outputs, ndoutputs); - SetShapeType(op, attrs, ctx, ndinputs, infered_num_outputs, &ndoutputs); + SetShapeType(op, attrs, ctx, ndinputs, infered_num_outputs, &ndoutputs, &storage_type); std::vector read_vars, write_vars; std::vector requested; @@ -365,20 +432,24 @@ int MXImperativeInvoke(AtomicSymbolCreator creator, SetDependency(&read_vars, &write_vars, &requested, &auxidx, op, attrs, ctx, ndinputs, ndoutputs); - FCompute fn; - if (ctx.dev_mask() == cpu::kDevMask && fcpu.count(op)) { - fn = fcpu[op]; - } else if (ctx.dev_mask() == gpu::kDevMask && fgpu.count(op)) { - fn = fgpu[op]; - } - - if (fn) { + FCompute fn = common::GetFCompute(op, ctx); + FComputeEx fcomp_ex = common::GetFComputeEx(op, ctx, storage_type); + if (fcomp_ex) { + PushFComputeEx(fcomp_ex, op, attrs, ctx, read_vars, write_vars, requested, + ndinputs, ndoutputs); +#if IMPERATIVE_EXEC_DEBUG + LOG(INFO) << "FComputeEx executed."; +#endif + } else if (fn) { if (AutogradRuntime::Get()->IsTraining()) { AutogradRuntime::Get()->RecordImperativeFCompute(op, attrs, &ndinputs, &ndoutputs); } PushFCompute(fn, op, attrs, ctx, read_vars, write_vars, requested, ndinputs, ndoutputs); +#if IMPERATIVE_EXEC_DEBUG + LOG(INFO) << "FCompute executed."; +#endif } else if (createop.count(op)) { std::shared_ptr opr( createop[op](attrs, ctx, ret->arg_shapes, ret->arg_types)); @@ -388,11 +459,14 @@ int MXImperativeInvoke(AtomicSymbolCreator creator, } PushOperator(opr, op, attrs, ctx, read_vars, write_vars, requested, auxidx, ndinputs, ndoutputs); +#if IMPERATIVE_EXEC_DEBUG + LOG(INFO) << "CreateOp executed."; +#endif } else { LOG(FATAL) << "Operator " << op->name << " cannot be run; requires at least one of" - << " FCompute, NDArrayFunction, FCreateOperator be registered"; + << " FCompute, FComputeEx NDArrayFunction, FCreateOperator be registered"; } } diff --git a/src/c_api/c_api_symbolic.cc b/src/c_api/c_api_symbolic.cc index f7281c999e6a..b6e1c30e7dd8 100644 --- a/src/c_api/c_api_symbolic.cc +++ b/src/c_api/c_api_symbolic.cc @@ -363,7 +363,6 @@ int MXSymbolSaveToJSON(SymbolHandle symbol, const char **out_json) { API_END(); } - namespace mxnet { template @@ -497,6 +496,58 @@ int MXSymbolInferShapePartial(SymbolHandle sym, &succ); } +// TODO(haibin) refactor with infer_type +int MXSymbolInferStorageType(SymbolHandle sym, + mx_uint num_args, + const char** keys, + const int *arg_storage_type_data, + mx_uint *in_storage_type_size, + const int **in_storage_type_data, + mx_uint *out_storage_type_size, + const int **out_storage_type_data, + mx_uint *aux_storage_type_size, + const int **aux_storage_type_data, + int *complete) { + nnvm::Symbol *s = static_cast(sym); + MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); + API_BEGIN(); + nnvm::Graph g = Symbol2Graph(*s); + nnvm::StorageTypeVector arg_storage_types(g.indexed_graph().input_nodes().size(), + kUndefinedStorage); + if (keys == nullptr && num_args != 0) { + std::vector read_only_args = mxnet::ReadOnlyArgIndices(g.indexed_graph()); + CHECK_LE(num_args, read_only_args.size()); + for (mx_uint i = 0; i < num_args; ++i) { + arg_storage_types[read_only_args[i]] = arg_storage_type_data[i]; + } + } else { + std::unordered_map kwargs; + for (mx_uint i = 0; i < num_args; ++i) { + kwargs[keys[i]] = arg_storage_type_data[i]; + } + mxnet::MatchArguments(g.indexed_graph(), kwargs, &arg_storage_types, "InferStorageType"); + } + + g = nnvm::pass::InferStorageType(std::move(g), arg_storage_types, "__storage_type__"); + // copy back + CopyAttr(g.indexed_graph(), g.GetAttr("storage_type"), + &(ret->arg_storage_types), &(ret->out_storage_types), &(ret->aux_storage_types)); + + *in_storage_type_size = static_cast(ret->arg_storage_types.size()); + *in_storage_type_data = dmlc::BeginPtr(ret->arg_storage_types); + *out_storage_type_size = static_cast(ret->out_storage_types.size()); + *out_storage_type_data = dmlc::BeginPtr(ret->out_storage_types); + *in_storage_type_size = static_cast(ret->arg_storage_types.size()); + *in_storage_type_data = dmlc::BeginPtr(ret->arg_storage_types); + *out_storage_type_size = static_cast(ret->out_storage_types.size()); + *out_storage_type_data = dmlc::BeginPtr(ret->out_storage_types); + *aux_storage_type_size = static_cast(ret->aux_storage_types.size()); + *aux_storage_type_data = dmlc::BeginPtr(ret->aux_storage_types); + *complete = (g.GetAttr("storage_type_num_unknown_nodes") == 0); + API_END(); +} + + int MXSymbolInferType(SymbolHandle sym, mx_uint num_args, const char** keys, diff --git a/src/common/utils.h b/src/common/utils.h index 789b4d14b9f2..1687a0909839 100644 --- a/src/common/utils.h +++ b/src/common/utils.h @@ -18,11 +18,106 @@ #include #include +#include +#include +#include namespace mxnet { +// forward declaration +namespace op { +template +void CastStorageComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs); +} + namespace common { #if DMLC_USE_CXX11 +/* + * \brief Get input TBlobs from NDArrays, potentially performing cast_storage op and store + * temporary NDArrays in temps. If storage_fallback is false, + * MXNET_EXEC_STORAGE_FALLBACK env var determines whether storage type fallback is allowed. + */ +template +inline void GetInputBlobs(const std::vector& nds, + std::vector *blobs, + std::vector *temps, + const OpContext& ctx, + bool storage_fallback = false) { + if (storage_fallback == false) { + storage_fallback = dmlc::GetEnv("MXNET_EXEC_STORAGE_FALLBACK", true); + } + for (auto& nd : nds) { + if (nd.storage_type() != kDefaultStorage) { + if (storage_fallback == false) { + LOG(FATAL) << "Storage type conversion detected during execution. " + << "You are probably executing an operator which " + << "doesn't support NDArray inputs with non-default storage."; + } + NDArray temp(nd.shape(), nd.ctx(), false); + op::CastStorageComputeImpl(ctx.get_stream(), nd, temp); + temps->push_back(temp); + blobs->push_back(temp.data()); + } else { + blobs->push_back(nd.data()); + } + } +} + +template +inline void GetOutputBlobs(const std::vector& nds, + std::vector *blobs) { + for (auto& nd : nds) { + blobs->push_back(nd.data()); + } +} + +// Check if any storage type is not default storage +inline bool ContainsNonDefaultStorage(const nnvm::StorageTypeVector& vstorage) { + for (auto& i : vstorage) { + if (i != kUndefinedStorage && i != kDefaultStorage) return true; + } + return false; +} + +inline bool ContainsDefaultStorage(const std::vector& ndarrays) { + for (auto &nd : ndarrays) { + if (nd.storage_type() == kDefaultStorage) { + return true; + } + } + return false; +} + +inline FCompute GetFCompute(const Op* op, Context ctx) { + static auto& fcompute_cpu = nnvm::Op::GetAttr("FCompute"); + static auto& fcompute_gpu = nnvm::Op::GetAttr("FCompute"); + if (ctx.dev_mask() == cpu::kDevMask) { + return fcompute_cpu.get(op, nullptr); + } else if (ctx.dev_mask() == gpu::kDevMask) { + return fcompute_gpu.get(op, nullptr); + } + LOG(FATAL) << "Unknown device mask"; + return nullptr; +} + +inline FComputeEx GetFComputeEx(const Op* op, Context ctx, int stype) { + static auto& fcpu = nnvm::Op::GetAttr(FCOMP_EX_CPU); + static auto& fgpu = nnvm::Op::GetAttr(FCOMP_EX_GPU); + if (stype == kDefaultStorage) return nullptr; + if (ctx.dev_mask() == cpu::kDevMask) { + return fcpu.get(op, nullptr); + } else if (ctx.dev_mask() == gpu::kDevMask) { + return fgpu.get(op, nullptr); + } + LOG(FATAL) << "Unknown device mask"; + return nullptr; +} + + // heuristic to dermine number of threads per GPU inline int GetNumThreadPerGPU() { // This is resource efficient option. diff --git a/src/executor/attach_op_execs_pass.cc b/src/executor/attach_op_execs_pass.cc index 16b55adc15e8..27839760f7ea 100644 --- a/src/executor/attach_op_execs_pass.cc +++ b/src/executor/attach_op_execs_pass.cc @@ -8,11 +8,15 @@ #include #include #include "./exec_pass.h" +#include "../common/utils.h" #if MXNET_USE_MKL2017 == 1 #include #include "../operator/mkl/mkl_memory-inl.h" #include "../operator/mkl/mkl_util-inl.h" #endif + +#define EXEC_ATTACH_OP_DEBUG 0 + namespace mxnet { namespace op { @@ -24,8 +28,28 @@ namespace exec { // forward executor class ForwardOpExecutor : public OpExecutor { public: - void Run(RunContext rctx) override { + void Run(RunContext rctx, bool is_gpu) override { op_ctx.run_ctx = rctx; + + // TODO(haibin) ForwardOp is stateful. If any input ndarray has non-default storage, + // we need to cast it to default storage and setup the tblobs again. For example, + // if any of the input ndarray chagnes, the updated value won't be reflected in the temporary + // ndarray with default storage. This is not efficient and should be improved later. + in_data_.clear(); out_data_.clear(); aux_data_.clear(); tmps_.clear(); + if (is_gpu) { +#if MXNET_USE_CUDA + common::GetInputBlobs(in_array_, &in_data_, &tmps_, op_ctx); + common::GetInputBlobs(aux_array_, &aux_data_, &tmps_, op_ctx); + common::GetOutputBlobs(out_array, &out_data_); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + common::GetInputBlobs(in_array_, &in_data_, &tmps_, op_ctx); + common::GetInputBlobs(aux_array_, &aux_data_, &tmps_, op_ctx); + common::GetOutputBlobs(out_array, &out_data_); + } + op_->Forward(op_ctx, in_data_, req, out_data_, aux_data_); #if MKL_EXPERIMENTAL == 1 mkl_tblobs_prv_to_cpu(in_data_); @@ -35,18 +59,14 @@ class ForwardOpExecutor : public OpExecutor { } void Setup() override { - in_data_.clear(); aux_data_.clear(); + // We need to tell whether in NDArray is input or aux for (size_t i = 0; i < in_array.size(); ++i) { if (!std::binary_search(aux_index_.begin(), aux_index_.end(), i)) { - in_data_.push_back(in_array[i].data()); + in_array_.emplace_back(in_array[i]); } else { - aux_data_.push_back(in_array[i].data()); + aux_array_.emplace_back(in_array[i]); } } - out_data_.resize(out_array.size()); - std::transform(out_array.begin(), out_array.end(), out_data_.begin(), [](const NDArray& nd) { - return nd.data(); - }); } Operator::ExecType exec_type() const override { return op_->exec_type(); @@ -62,12 +82,13 @@ class ForwardOpExecutor : public OpExecutor { std::shared_ptr op_; std::vector aux_index_; std::vector in_data_, out_data_, aux_data_; + std::vector in_array_, aux_array_, tmps_; }; // backward executor class BackwardOpExecutor : public OpExecutor { public: - void Run(RunContext rctx) override { + void Run(RunContext rctx, bool is_gpu) override { op_ctx.run_ctx = rctx; op_->Backward(op_ctx, out_grad_, in_data_, out_data_, req, in_grad_, aux_data_); @@ -135,23 +156,32 @@ class BackwardOpExecutor : public OpExecutor { // fcompute executor executor class FComputeExecutor : public OpExecutor { public: - void Run(RunContext rctx) override { + void Run(RunContext rctx, bool is_gpu) override { op_ctx.run_ctx = rctx; + // setup blobs + // TODO(haibin) we should avoid repeating this if it's known that all inputs are in + // default-storage. + { + in_data_.clear(); out_data_.clear(), tmp_nds_.clear(); + if (is_gpu) { +#if MXNET_USE_CUDA + common::GetInputBlobs(in_array, &in_data_, &tmp_nds_, op_ctx); + common::GetOutputBlobs(out_array, &out_data_); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + common::GetInputBlobs(in_array, &in_data_, &tmp_nds_, op_ctx); + common::GetOutputBlobs(out_array, &out_data_); + } + } fcompute_(attrs_, op_ctx, in_data_, req, out_data_); #if MKL_EXPERIMENTAL == 1 mkl_tblobs_prv_to_cpu(in_data_); mkl_tblobs_prv_to_cpu(out_data_); #endif } - void Setup() override { - in_data_.resize(in_array.size()); - out_data_.resize(out_array.size()); - auto get_blob = [](const NDArray& nd) { - return nd.data(); - }; - std::transform(in_array.begin(), in_array.end(), in_data_.begin(), get_blob); - std::transform(out_array.begin(), out_array.end(), out_data_.begin(), get_blob); - } + void Setup() override {} Operator::ExecType exec_type() const override { return Operator::kSync; } @@ -159,28 +189,41 @@ class FComputeExecutor : public OpExecutor { : fcompute_(fcompute), attrs_(attrs) { } - static FCompute GetFCompute(const Op* op, Context ctx) { - static auto& fcompute_cpu = nnvm::Op::GetAttr("FCompute"); - static auto& fcompute_gpu = nnvm::Op::GetAttr("FCompute"); - if (ctx.dev_mask() == cpu::kDevMask) { - return fcompute_cpu.get(op, nullptr); - } else if (ctx.dev_mask() == gpu::kDevMask) { - return fcompute_gpu.get(op, nullptr); - } else { - LOG(FATAL) << "Unknown device mask"; - return nullptr; - } - } - private: FCompute fcompute_; NodeAttrs attrs_; std::vector in_data_, out_data_; + std::vector tmp_nds_; +}; + +// fcomputend executor +class FComputeExExecutor : public OpExecutor { + public: + void Run(RunContext rctx, bool is_gpu) override { + op_ctx.run_ctx = rctx; + fcompute_(attrs_, op_ctx, in_data_, req, out_data_); + } + void Setup() override { + in_data_ = in_array; + out_data_ = out_array; + } + Operator::ExecType exec_type() const override { + return Operator::kSync; + } + explicit FComputeExExecutor(FComputeEx fcompute, const NodeAttrs& attrs) + : fcompute_(fcompute), attrs_(attrs) { + } + + private: + FComputeEx fcompute_; + NodeAttrs attrs_; + std::vector in_data_, out_data_; }; // pass to attach operator executors Graph AttachOpExecs(Graph g) { using nnvm::DTypeVector; + using nnvm::StorageTypeVector; using nnvm::ShapeVector; using nnvm::FMutateInputs; @@ -193,6 +236,7 @@ Graph AttachOpExecs(Graph g) { const auto& vctx = g.GetAttr("context"); const auto& saved_opr = g.GetAttr< std::unordered_map>>("saved_opr"); + const auto& dispatch_stypes = g.GetAttr("dispatch_stypes"); // get the graph const auto& idx = g.indexed_graph(); @@ -206,7 +250,12 @@ Graph AttachOpExecs(Graph g) { if (fmutate_inputs.count(inode.source->op())) { mutate_index = fmutate_inputs[inode.source->op()](inode.source->attrs); } - FCompute fcompute = FComputeExecutor::GetFCompute(inode.source->op(), vctx[i]); + FCompute fcompute = common::GetFCompute(inode.source->op(), vctx[i]); + FComputeEx fcompute_ex = + common::GetFComputeEx(inode.source->op(), vctx[i], dispatch_stypes[i]); +#if EXEC_ATTACH_OP_DEBUG + LOG(INFO) << "dispatch storage type = " << dispatch_stypes[i]; +#endif if (fcreate_layer_op.count(inode.source->op())) { std::vector ishape; std::vector itype; @@ -222,19 +271,33 @@ Graph AttachOpExecs(Graph g) { inode.source->attrs, vctx[i], ishape, itype)); } ret[i] = std::make_shared(opr, mutate_index); +#if EXEC_ATTACH_OP_DEBUG + LOG(INFO) << "ForwardOp for op " << inode.source->op()->name; +#endif } else if (is_layer_backward.get(inode.source->op(), false)) { CHECK_GE(inode.control_deps.size(), 1); uint32_t fwd_id = inode.control_deps[0]; CHECK(vctx[fwd_id] == vctx[i]); CHECK(ret[fwd_id] != nullptr); + CHECK_EQ(dispatch_stypes[i], kDefaultStorage) + << "BackwardOp doesn't handle non-default storage yet"; ret[i] = std::make_shared( dynamic_cast(ret[fwd_id].get())->op_, mxnet::op::OpPropGetOpProperty(inode.source->attrs), mutate_index); +#if EXEC_ATTACH_OP_DEBUG + LOG(INFO) << "BackwardOp for op " << inode.source->op()->name; +#endif + } else if (fcompute_ex != nullptr) { +#if EXEC_ATTACH_OP_DEBUG + LOG(INFO) << "FComputeEx for op " << inode.source->op()->name; +#endif + ret[i] = std::make_shared(fcompute_ex, inode.source->attrs); } else if (fcompute != nullptr) { +#if EXEC_ATTACH_OP_DEBUG + LOG(INFO) << "FCompute for op " << inode.source->op()->name; +#endif ret[i] = std::make_shared(fcompute, inode.source->attrs); - } else { - LOG(INFO) << "FCompute not registered " << inode.source->op()->name; } } g.attrs["op_execs"] = std::make_shared(ret); diff --git a/src/executor/exec_pass.h b/src/executor/exec_pass.h index 8df6a3c5d3bb..20535be320d9 100644 --- a/src/executor/exec_pass.h +++ b/src/executor/exec_pass.h @@ -19,6 +19,12 @@ namespace exec { /*! \brief reuse graph definition */ using nnvm::Graph; +const int kBadStorageID = -1; +const int kExternalStorageID = -2; +const int kDynamicStorageID = -3; + +const int kNonDefaultStorage = -2; + /*! * \brief executor to execute an operator * This is a graph executor dependent interface @@ -26,7 +32,7 @@ using nnvm::Graph; */ class OpExecutor { public: - /*! \brief input arrays */ + /*! \brief input data arrays, which may be either input or aux */ std::vector in_array; /*! \brief output data arrays */ std::vector out_array; @@ -47,7 +53,7 @@ class OpExecutor { * This function call do not synchronize the stream. * \param rctx The runtime context passed in by environment. */ - virtual void Run(RunContext rctx) = 0; + virtual void Run(RunContext rctx, bool is_gpu) = 0; /*! \return the execution type */ virtual Operator::ExecType exec_type() const = 0; }; diff --git a/src/executor/graph_executor.cc b/src/executor/graph_executor.cc index 6ba0ff96b382..c07e86c49b3f 100644 --- a/src/executor/graph_executor.cc +++ b/src/executor/graph_executor.cc @@ -12,6 +12,7 @@ #include "./exec_pass.h" #include "./graph_executor.h" #include "../engine/profiler.h" +#include "../common/utils.h" namespace mxnet { namespace exec { @@ -29,6 +30,30 @@ GraphExecutor::~GraphExecutor() { } } +inline NDArray InitZeros(const NDArrayStorageType stype, const TShape &shape, + const Context &ctx, const int dtype) { + // NDArray with default storage + if (stype == kDefaultStorage) { + NDArray ret(shape, ctx, false, dtype); + ret = 0; + return ret; + } + // NDArray with non-default storage. Storage allocation is always delayed. + return NDArray(stype, shape, ctx, true, dtype); +} + +inline void EmplaceBackZeros(const NDArrayStorageType stype, const TShape &shape, + const Context &ctx, const int dtype, + std::vector *vec) { + // NDArray with default storage + if (stype == kDefaultStorage) { + vec->emplace_back(shape, ctx, false, dtype); + vec->back() = 0; + } else { + // NDArray with non-default storage. Storage allocation is always delayed. + vec->emplace_back(stype, shape, ctx, true, dtype); + } +} void GraphExecutor::Forward(bool is_train) { RunOps(is_train, 0, num_forward_nodes_); } @@ -78,6 +103,18 @@ const std::vector& GraphExecutor::outputs() const { return output_arrays_; } +const std::unordered_map& GraphExecutor::in_arg_map() const { + return in_arg_map_; +} + +const std::unordered_map& GraphExecutor::arg_grad_map() const { + return arg_grad_map_; +} + +const std::unordered_map& GraphExecutor::aux_state_map() const { + return aux_state_map_; +} + nnvm::NodeEntry AttrHint(nnvm::NodeEntry src, nnvm::NodeEntry like) { static const Op* id_like = Op::Get("_identity_with_attr_like_rhs"); nnvm::NodePtr n = nnvm::Node::Create(); @@ -178,10 +215,12 @@ inline ValueType get_node_attr( } } -nnvm::Graph GraphExecutor::InitFullGraph( - nnvm::Symbol symbol, - const std::vector& grad_req_type, - const std::vector& arg_grad_store) { +/*! + * \brief Create the graph for backward pass. + * This is triggered by both simple_bind and bind flows. + */ +nnvm::Graph GraphExecutor::InitFullGraph(nnvm::Symbol symbol, + const std::vector& grad_req_types) { using nnvm::NodePtr; using nnvm::NodeEntry; // initial information @@ -191,7 +230,7 @@ nnvm::Graph GraphExecutor::InitFullGraph( nnvm::Graph g; g.outputs = symbol.outputs; bool need_grad = false; - for (OpReqType req : grad_req_type) { + for (OpReqType req : grad_req_types) { if (req != kNullOp) need_grad = true; } if (!need_grad) return g; @@ -202,10 +241,8 @@ nnvm::Graph GraphExecutor::InitFullGraph( } std::vector args = symbol.ListInputs(nnvm::Symbol::kReadOnlyArgs); std::vector xs; - for (size_t i = 0; i < grad_req_type.size(); ++i) { - if (grad_req_type[i] != kNullOp) { - grad_store_.emplace_back( - std::make_pair(grad_req_type[i], arg_grad_store[i])); + for (size_t i = 0; i < grad_req_types.size(); ++i) { + if (grad_req_types[i] != kNullOp) { xs.emplace_back(NodeEntry{args[i], 0, 0}); } } @@ -241,13 +278,16 @@ nnvm::Graph GraphExecutor::InitFullGraph( return g; } -// pass to assign context to the graph +/*! + * \brief Assign context to the graph. + * This is triggered by both simple_bind and bind flows. + */ Graph AssignContext(Graph g, const Context& default_ctx, const std::map& ctx_map, - const std::vector& in_args, - const std::vector >& grad_store, - const std::vector& aux_states, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, size_t num_forward_inputs, size_t num_forward_outputs) { const auto& idx = g.indexed_graph(); @@ -256,56 +296,65 @@ Graph AssignContext(Graph g, if (ctx_map.size() == 0) { g.attrs["context"] = std::make_shared( ContextVector(idx.num_nodes(), default_ctx)); - for (const auto& x : in_args) { - CHECK(x.ctx() == default_ctx) - << "Input array is in " << x.ctx() << " while binding with ctx=" << default_ctx + for (const auto& x : in_arg_ctxes) { + CHECK(x == default_ctx) + << "Input array is in " << x << " while binding with ctx=" << default_ctx << ". All arguments must be in global context (" << default_ctx << ") unless group2ctx is specified for cross-device graph."; } - for (const auto& x : grad_store) { - CHECK(x.second.ctx() == default_ctx) - << "Gradient array is in " << x.second.ctx() << " while binding with ctx=" + for (const auto& x : arg_grad_ctxes) { + CHECK(x == default_ctx) + << "Gradient array is in " << x << " while binding with ctx=" << default_ctx << ". All gradients must be in global context (" << default_ctx << ") unless group2ctx is specified for cross-device graph."; } return g; } + // otherwise, use context assignment. - std::map ctx2id; - std::vector ctx_list; - nnvm::DeviceVector device(idx.num_nodes(), -1); - nnvm::DeviceAssignMap device_map; + std::map ctx2id; // map ctx to device id + std::vector ctx_list; // index is device id + nnvm::DeviceVector device(idx.num_nodes(), -1); // index is node id + nnvm::DeviceAssignMap device_map; // map arg name to device id + // loop through the user input ctx_map and + // populate maps and lists for (auto &kv : ctx_map) { - if (ctx2id.count(kv.second) == 0) { - ctx2id[kv.second] = static_cast(ctx_list.size()); - ctx_list.push_back(kv.second); + if (ctx2id.count(kv.second) == 0) { // if context has no device id, create one + ctx2id[kv.second] = static_cast(ctx_list.size()); // assign device id to ctx + ctx_list.push_back(kv.second); // save ctx to the list } + // assign device id to to the arg name with the corresponding ctx device_map[kv.first] = ctx2id.at(kv.second); } + // loop through all the rest of input nodes not specified + // in the ctx_map and populate maps and lists size_t arg_top = 0, aux_top = 0; for (size_t i = 0; i < num_forward_inputs; ++i) { const uint32_t nid = idx.input_nodes().at(i); Context ctx; - if (mutable_nodes.count(nid)) { - CHECK_LT(aux_top, aux_states.size()); - ctx = aux_states[aux_top].ctx(); + if (mutable_nodes.count(nid)) { // aux node is mutable + CHECK_LT(aux_top, aux_state_ctxes.size()); + ctx = aux_state_ctxes[aux_top]; ++aux_top; - } else { - CHECK_LT(arg_top, in_args.size()); - ctx = in_args[arg_top].ctx(); + } else { // regular input node is immutable + CHECK_LT(arg_top, in_arg_ctxes.size()); + ctx = in_arg_ctxes[arg_top]; ++arg_top; } - if (ctx2id.count(ctx) == 0) { - ctx2id[ctx] = static_cast(ctx_list.size()); - ctx_list.push_back(ctx); + if (ctx2id.count(ctx) == 0) { // if the current ctx is not in the map of ctx and device id + ctx2id[ctx] = static_cast(ctx_list.size()); // assign the current ctx with device id + ctx_list.push_back(ctx); // save the current ctx in the list } - device[nid] = ctx2id.at(ctx); + device[nid] = ctx2id.at(ctx); // assign device id to the current node } + + // loop through backward input nodes and populate maps and lists + // the backward input nodes is the gradient of the loss wrt the output for (size_t i = num_forward_outputs; i < g.outputs.size(); ++i) { const uint32_t nid = idx.outputs()[i].node_id; - Context ctx = grad_store[i - num_forward_outputs].second.ctx(); + Context ctx = arg_grad_ctxes[i - num_forward_outputs]; if (ctx2id.count(ctx) == 0) { ctx2id[ctx] = static_cast(ctx_list.size()); ctx_list.push_back(ctx); @@ -317,6 +366,7 @@ Graph AssignContext(Graph g, device[nid] = devid; } } + g.attrs["device"] = std::make_shared(std::move(device)); g = nnvm::pass::PlaceDevice(g, "__ctx_group__", device_map, "_CrossDeviceCopy"); const auto& assigned_device = g.GetAttr("device"); @@ -333,27 +383,388 @@ Graph AssignContext(Graph g, return g; } +/*! + * \brief GraphExecutor initializer for regular bind flow in which + * input arguments and gradients are provided by users. This initializer + * uses the user provided NDArrays to populate data entries of the graph. + */ void GraphExecutor::Init(nnvm::Symbol symbol, const Context& default_ctx, const std::map& ctx_map, const std::vector& in_args, const std::vector& arg_grad_store, - const std::vector& grad_req_type, + const std::vector& grad_req_types, const std::vector& aux_states, Executor* shared_exec, const nnvm::NodeEntryMap& feed_dict) { - nnvm::Graph g = InitGraph(symbol, default_ctx, - ctx_map, in_args, arg_grad_store, - grad_req_type, aux_states, feed_dict); + // create in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes + auto get_ctx1 = [](const NDArray& nd) { return nd.ctx(); }; + auto get_ctx2 = [default_ctx](const NDArray& nd) -> Context { + if (nd.is_none()) return default_ctx; + return nd.ctx(); + }; + std::vector in_arg_ctxes(in_args.size()); + std::transform(in_args.begin(), in_args.end(), in_arg_ctxes.begin(), get_ctx1); + std::vector arg_grad_ctxes(arg_grad_store.size()); + std::transform(arg_grad_store.begin(), arg_grad_store.end(), arg_grad_ctxes.begin(), get_ctx2); + std::vector aux_state_ctxes(aux_states.size()); + std::transform(aux_states.begin(), aux_states.end(), aux_state_ctxes.begin(), get_ctx1); + + nnvm::Graph g = InitGraph(symbol, default_ctx, ctx_map, in_arg_ctxes, + arg_grad_ctxes, aux_state_ctxes, grad_req_types); + + // create arg_shapes and arg_dtypes for shape and type inferences + const auto& idx = g.indexed_graph(); + auto mutable_nodes = idx.mutable_input_nodes(); + size_t arg_top = 0, aux_top = 0; + data_entry_.resize(idx.num_node_entries()); + nnvm::ShapeVector arg_shapes; + nnvm::DTypeVector arg_dtypes; + nnvm::StorageTypeVector arg_stypes; + for (size_t i = 0; i < num_forward_inputs_; ++i) { + const uint32_t nid = idx.input_nodes().at(i); + const std::string& arg_name = idx[nid].source->attrs.name; + size_t eid = idx.entry_id(nid, 0); + if (mutable_nodes.count(nid)) { + CHECK_LT(aux_top, aux_states.size()); + data_entry_[eid] = aux_states[aux_top]; + arg_shapes.push_back(aux_states[aux_top].shape()); + arg_dtypes.push_back(aux_states[aux_top].dtype()); + arg_stypes.push_back(aux_states[aux_top].storage_type()); + aux_state_map_.emplace(arg_name, aux_states[aux_top]); + ++aux_top; + } else { + CHECK_LT(arg_top, in_args.size()); + data_entry_[eid] = in_args[arg_top]; + arg_shapes.push_back(in_args[arg_top].shape()); + arg_dtypes.push_back(in_args[arg_top].dtype()); + arg_stypes.push_back(in_args[arg_top].storage_type()); + in_arg_map_.emplace(arg_name, in_args[arg_top]); + if (kNullOp != grad_req_types[arg_top]) { + grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_store[arg_top]); + arg_grad_map_.emplace(arg_name, arg_grad_store[arg_top]); + } + ++arg_top; + } +#if EXECUTOR_DEBUG + LOG(INFO) << "\tassign data entry\t" << eid << " as stype " + << data_entry_[eid].storage_type() << " (input)"; +#endif + } + + // expand arg_shapes and arg_dtypes to contain backward inputs + arg_shapes.resize(idx.input_nodes().size(), TShape()); + arg_dtypes.resize(idx.input_nodes().size(), -1); + arg_stypes.resize(idx.input_nodes().size(), kUndefinedStorage); + // Infer shapes and dtypes + g = nnvm::pass::InferShape(g, arg_shapes, "__shape__"); + g = nnvm::pass::InferType(g, arg_dtypes, "__dtype__"); + g = nnvm::pass::InferStorageType(g, arg_stypes, "__storage_type__"); + + // Initialize the rest attributes of the graph. + // This function can be called by regular bind + // operation flow as well. + FinishInitGraph(symbol, g, shared_exec, feed_dict); +} + +/*! + * \brief Initialize in_args, arg_grads, and aux_states + * and their data_entry_ of the executor. This function + * is called for regular simple_bind flow, i.e. no + * shared data arrays are provided. + */ +void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, + const nnvm::ShapeVector& inferred_shapes, + const nnvm::DTypeVector& inferred_dtypes, + const nnvm::StorageTypeVector& inferred_stypes, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec) { + // initialize in_args, arg_grads, and aux_states + // populate grad_store_ + data_entry_.resize(idx.num_node_entries()); + size_t arg_top = 0, aux_top = 0; + auto mutable_nodes = idx.mutable_input_nodes(); + for (size_t i = 0; i < num_forward_inputs_; ++i) { + const uint32_t nid = idx.input_nodes().at(i); + const uint32_t eid = idx.entry_id(nid, 0); + const TShape& inferred_shape = inferred_shapes[eid]; + const int inferred_dtype = inferred_dtypes[eid]; + const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; + const std::string& arg_name = idx[nid].source->attrs.name; + if (mutable_nodes.count(nid)) { // aux_states + EmplaceBackZeros(inferred_stype, inferred_shape, aux_state_ctxes[aux_top], + inferred_dtype, aux_state_vec); + data_entry_[eid] = aux_state_vec->back(); + aux_state_map_.emplace(arg_name, aux_state_vec->back()); + ++aux_top; +#if EXECUTOR_DEBUG + LOG(INFO) << "\tassign aux entry\t" << eid << "\t as stype " << inferred_stype; +#endif + } else { // in_args + EmplaceBackZeros(inferred_stype, inferred_shape, in_arg_ctxes[arg_top], + inferred_dtype, in_arg_vec); + data_entry_[eid] = in_arg_vec->back(); +#if EXECUTOR_DEBUG + LOG(INFO) << "\tassign data entry\t" << eid << "\tas stype " << inferred_stype; +#endif + // Get the storage type for grad + if (kNullOp == grad_req_types[arg_top]) { + arg_grad_vec->emplace_back(); + } else { + // Init based on storage type + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; + EmplaceBackZeros(grad_stype, inferred_shape, arg_grad_ctxes[arg_top], + inferred_dtype, arg_grad_vec); +#if EXECUTOR_DEBUG + LOG(INFO) << "\tassign grad entry\t" << grad_eid << "\tas stype " << grad_stype; +#endif + grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); + arg_grad_map_.emplace(arg_name, arg_grad_vec->back()); + } + in_arg_map_.emplace(arg_name, in_arg_vec->back()); + ++arg_top; + } + } +} + + +/*! + * \brief If the requested ndarray's shape size is less than + * the corresponding shared_data_array's shape size and the + * storage type is default storage, reuse the memory allocation + * in shared_buffer; otherwise, create a zero ndarray. + */ +NDArray ReshapeOrCreate(const std::string& name, + const TShape& dest_arg_shape, + const int dest_arg_dtype, + const NDArrayStorageType dest_arg_stype, + const Context& ctx, + std::unordered_map* shared_buffer) { + if (dest_arg_dtype != kDefaultStorage) { + return InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); + } + auto it = shared_buffer->find(name); + if (it != shared_buffer->end()) { + if (it->second.shape().Size() >= dest_arg_shape.Size()) { // memory can be reused + CHECK_EQ(it->second.dtype(), dest_arg_dtype) + << "Requested arg array's dtype does not match the reusable ndarray"; + CHECK_EQ(it->second.storage_type(), kDefaultStorage) + << "shared_buffer should only contain NDArrays with default storage type."; + return it->second.Reshape(dest_arg_shape); + } else { + LOG(WARNING) << "Bucketing: data " << name << " has a shape " << dest_arg_shape + << ", which is larger than already allocated shape " << it->second.shape() + << ". Need to re-allocate. Consider putting default bucket key to be " + << "the bucket taking the largest input for better memory sharing."; + // the NDArrays in shared_buffer are guaranteed to be of default storage + it->second = InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); + return it->second; + } // arg_array.shape().Size() >= arg_shape.Size() + } else { + auto ret = InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); + shared_buffer->emplace(name, ret); + return ret; + } // if (it != shared_buffer->end()) +} + +/*! + * \brief Initialize in_args, arg_grads, and aux_states + * and their data_entry_ of the executor using + * shared_buffer from DataParallelExecutorGroup + * and shared_exec if available. + */ +void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, + const nnvm::ShapeVector& inferred_shapes, + const nnvm::DTypeVector& inferred_dtypes, + const nnvm::StorageTypeVector& inferred_stypes, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types, + const std::unordered_set& shared_arg_names, + const Executor* shared_exec, + std::unordered_map* shared_buffer, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec) { + // initialize in_args, arg_grads, and aux_states and populate grad_store_ + data_entry_.resize(idx.num_node_entries()); + size_t arg_top = 0, aux_top = 0; + auto mutable_nodes = idx.mutable_input_nodes(); + const auto& shared_exec_in_args = shared_exec->in_arg_map(); + const auto& shared_exec_arg_grads = shared_exec->arg_grad_map(); + const auto& shared_exec_aux_states = shared_exec->aux_state_map(); + for (size_t i = 0; i < num_forward_inputs_; ++i) { + const uint32_t nid = idx.input_nodes().at(i); + const uint32_t eid = idx.entry_id(nid, 0); + const TShape& inferred_shape = inferred_shapes[eid]; + const int inferred_dtype = inferred_dtypes[eid]; + const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; + const std::string& arg_name = idx[nid].source->attrs.name; + // aux_states + if (mutable_nodes.count(nid)) { + if (nullptr != shared_exec && inferred_stype == kDefaultStorage && + shared_exec_aux_states.at(arg_name).storage_type() == kDefaultStorage) { + const NDArray& aux_nd = shared_exec_aux_states.at(arg_name); + CHECK_EQ(inferred_shape, aux_nd.shape()) + << "Inferred shape does not match shared_exec.aux_array's shape." + " Therefore, the allocated memory for shared_exec.aux_array cannot" + " be resued for creating auxilliary NDArray of the argument" + << arg_name << " for the current executor"; + CHECK_EQ(inferred_dtype, aux_nd.dtype()) + << "Inferred dtype does not match shared_exec.aux_array's dtype." + " Therefore, the allocated memory for shared_exec.aux_array cannot" + " be resued for creating auxilliary NDArray of the argument" + << arg_name << " for the current executor"; + aux_state_vec->emplace_back(aux_nd); + } else { + EmplaceBackZeros(inferred_stype, inferred_shape, aux_state_ctxes[aux_top], + inferred_dtype, aux_state_vec); + } // if (has_shared_exec) + data_entry_[eid] = aux_state_vec->back(); + aux_state_map_.emplace(arg_name, aux_state_vec->back()); + ++aux_top; + } else { // in_args and grad for in_args + if (shared_arg_names.count(arg_name)) { // model parameter + // model parameter + if (nullptr != shared_exec && inferred_stype == kDefaultStorage && + shared_exec_in_args.at(arg_name).storage_type() == kDefaultStorage) { + // try to reuse memory from shared_exec + const NDArray& in_arg_nd = shared_exec_in_args.at(arg_name); + CHECK_EQ(inferred_shape, in_arg_nd.shape()) + << "Inferred shape does not match shared_exec.arg_array's shape" + " Therefore, the allocated memory for shared_exec.arg_array cannot" + " be resued for creating NDArray of the argument" + << arg_name << " for the current executor"; + CHECK_EQ(inferred_dtype, in_arg_nd.dtype()) + << "Inferred dtype does not match shared_exec.arg_array's dtype" + " Therefore, the allocated memory for shared_exec.arg_array cannot" + " be resued for creating NDArray of the argument" + << arg_name << " for the current executor"; + in_arg_vec->emplace_back(in_arg_nd); + } else { + // doesn't have shared_exec, or non-default storage + EmplaceBackZeros(inferred_stype, inferred_shape, in_arg_ctxes[arg_top], + inferred_dtype, in_arg_vec); + } + // gradient for model parameter + if (kNullOp == grad_req_types[arg_top]) { + arg_grad_vec->emplace_back(); + } else { + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; + if (nullptr != shared_exec && grad_stype == kDefaultStorage && + shared_exec_arg_grads.at(arg_name).storage_type() == kDefaultStorage) { + // try to reuse memory from shared_exec + arg_grad_vec->emplace_back(shared_exec_arg_grads.at(arg_name)); + } else { + EmplaceBackZeros(grad_stype, inferred_shape, arg_grad_ctxes[arg_top], + inferred_dtype, arg_grad_vec); + } + grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); + } + } else { // !shared_arg_names.count(arg_name) + // model parameter + in_arg_vec->emplace_back(ReshapeOrCreate(arg_name, inferred_shape, inferred_dtype, + inferred_stype, in_arg_ctxes[arg_top], + shared_buffer)); + // gradient for model parameter + if (kNullOp == grad_req_types[arg_top]) { + arg_grad_vec->emplace_back(); + } else { + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; + arg_grad_vec->emplace_back(ReshapeOrCreate("grad of " + arg_name, inferred_shape, + inferred_dtype, grad_stype, + arg_grad_ctxes[arg_top], shared_buffer)); + grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); + } // if (kNullOp == grad_req_types[arg_top]) + } // if (shared_arg_names.count(arg_name)) + in_arg_map_.emplace(arg_name, in_arg_vec->back()); + if (!arg_grad_vec->back().is_none()) { + arg_grad_map_.emplace(arg_name, arg_grad_vec->back()); + } + data_entry_[eid] = in_arg_vec->back(); + ++arg_top; + } + } +} + +/*! + * \brief Finish graph initialization after shape and dtype inferences. + * This function is used by both simple_bind and bind flows. + */ +void GraphExecutor::FinishInitGraph(nnvm::Symbol symbol, + nnvm::Graph g, + Executor* shared_exec, + const nnvm::NodeEntryMap& feed_dict) { + const auto& idx = g.indexed_graph(); + // dispatch based on stype per operator + const auto& vstorage_type = g.GetAttr("storage_type"); + nnvm::StorageTypeVector dispatch_stypes(idx.num_nodes(), kUndefinedStorage); + for (size_t nid = 0; nid < idx.num_nodes(); nid++) { + const auto& inode = idx[nid]; + auto num_outputs = inode.source->num_outputs(); + auto num_inputs = inode.inputs.size(); + nnvm::StorageTypeVector vs(num_inputs + num_outputs, kUndefinedStorage); + for (size_t i = 0; i < num_inputs; i++) { + auto e = inode.inputs[i]; + vs[i] = vstorage_type[idx.entry_id(e)]; + CHECK_NE(vs[i], kUndefinedStorage); + } + for (uint32_t i = 0; i < num_outputs; ++i) { + uint32_t eid = idx.entry_id(nid, i); + vs[i + num_inputs] = vstorage_type[eid]; + } + bool contains_non_default = common::ContainsNonDefaultStorage(vs); + dispatch_stypes[nid] = contains_non_default ? kNonDefaultStorage : kDefaultStorage; + } + g.attrs["dispatch_stypes"] = std::make_shared(std::move(dispatch_stypes)); + + // data entries for output gradients + for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { + data_entry_[idx.entry_id(idx.outputs()[j])] = grad_store_[j - num_forward_outputs_].second; + } + + { + // memory allocator + nnvm::StorageVector arg_storage_id(idx.num_node_entries(), kBadStorageID); + for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { + arg_storage_id[idx.entry_id(idx.outputs()[j])] = kExternalStorageID; + } + for (const auto& kv : feed_dict) { + uint32_t eid = idx.entry_id(kv.first); + data_entry_[eid] = kv.second; + arg_storage_id[eid] = kExternalStorageID; + } + for (size_t i = 0; i < idx.num_node_entries(); i++) { + if (vstorage_type[i] != kDefaultStorage) arg_storage_id[i] = kDynamicStorageID; + } + g.attrs["storage"] = std::make_shared(std::move(arg_storage_id)); + g = nnvm::ApplyPass(g, "PlanMemory"); + } + g = DetectInplaceAddTo(g); + g.attrs["saved_opr"] = std::make_shared(std::move(saved_opr_)); g = AttachOpExecs(g); g = AttachOpResources(g); graph_ = std::move(g); + if (shared_exec != nullptr) { this->InitDataEntryMemory(&(dynamic_cast(shared_exec)->data_pool_)); } else { this->InitDataEntryMemory(nullptr); } + { // initialize output arrays auto& idx = graph_.indexed_graph(); @@ -373,22 +784,121 @@ void GraphExecutor::Init(nnvm::Symbol symbol, this->InitOpSegs(); } +/*! + * \brief GraphExecutor initializer for simple bind flow in + * which only certain input shapes and dtypes are provided by users. + * The initializer uses these shapes and dtypes to perform + * shape and dtype inferences, and then create NDArrays + * to populate data entries of the graph. The created NDArrays + * for in_args, arg_grads and aux_states are passed to the + * front end to attach the created executor. + * In front end, if the simple_bind flow is trigger by + * _bind_ith_exec, the shared data arrays of DataParallelExecutorGroup + * and shared executor will be taken into account in creating + * NDArrays for in_args, arg_grads, and aux_states for resuing + * already allocated memory. + */ +void GraphExecutor::Init(nnvm::Symbol symbol, + const Context& default_ctx, + const std::map& ctx_map, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, + const std::vector& grad_req_types, + const std::unordered_set& shared_arg_names, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec, + std::unordered_map* shared_buffer, + Executor* shared_exec, + const nnvm::NodeEntryMap& feed_dict) { + nnvm::Graph g = InitGraph(symbol, default_ctx, ctx_map, in_arg_ctxes, arg_grad_ctxes, + aux_state_ctxes, grad_req_types); + // The following code of shape and dtype inferences and argument + // initialization is for simple_bind only. Regular bind operation + // should do this differently. + + // Initialize arg_shapes and arg_dtypes for shape and type inferences. + // It contains all in_args and aux_states' shapes and types in a certain order. + const nnvm::IndexedGraph& idx = g.indexed_graph(); + nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); + nnvm::DTypeVector arg_dtypes(idx.input_nodes().size(), -1); + nnvm::DTypeVector arg_stypes(idx.input_nodes().size(), kUndefinedStorage); + for (size_t i = 0; i < num_forward_inputs_; ++i) { + const uint32_t nid = idx.input_nodes().at(i); + const std::string& name = idx[nid].source->attrs.name; + auto it1 = arg_shape_map.find(name); + if (arg_shape_map.end() != it1) { + arg_shapes[i] = it1->second; + } + auto it2 = arg_dtype_map.find(name); + if (arg_dtype_map.end() != it2) { + arg_dtypes[i] = it2->second; + } + auto it3 = arg_stype_map.find(name); + if (arg_stype_map.end() != it3) { + arg_stypes[i] = it3->second; + } + } + // TODO(jun/haibin) check if InferShape is successful, and give warnings instead of segfault later + g = nnvm::pass::InferShape(g, arg_shapes, "__shape__"); + g = nnvm::pass::InferType(g, arg_dtypes, "__dtype__"); + g = nnvm::pass::InferStorageType(g, arg_stypes, "__storage_type__"); + + // Create in_args, arg_grads, and aux_states using + // the inferred shapes and dtypes. + if (nullptr == shared_buffer) { // regular simple bind + InitArguments(idx, g.GetAttr("shape"), + g.GetAttr("dtype"), + g.GetAttr("storage_type"), + in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, + grad_req_types, in_arg_vec, arg_grad_vec, aux_state_vec); + } else { // simple bind using shared data arrays and shared_exec + InitArguments(idx, g.GetAttr("shape"), + g.GetAttr("dtype"), + g.GetAttr("storage_type"), + in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, + grad_req_types, shared_arg_names, shared_exec, + shared_buffer, in_arg_vec, arg_grad_vec, aux_state_vec); + } + // The above code of shape and dtype inferences and argument + // initialization is for simple_bind only. Regular bind operation + // should do this differently. + + // Initialize the rest attributes of the graph. + // This function can be called by regular bind + // operation flow as well. + FinishInitGraph(symbol, g, shared_exec, feed_dict); +} + +/*! + * \brief This function is triggered by both simple_bind + * and bind flows. + * Setup backward graph, create device and context + * attributes in the graph, and calculate the number + * of forward nodes. + */ Graph GraphExecutor::InitGraph(nnvm::Symbol symbol, const Context& default_ctx, const std::map& ctx_map, - const std::vector& in_args, - const std::vector& arg_grad_store, - const std::vector& grad_req_type, - const std::vector& aux_states, - const nnvm::NodeEntryMap& feed_dict) { + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types) { // setup gradient - nnvm::Graph g = InitFullGraph(symbol, grad_req_type, arg_grad_store); + nnvm::Graph g = InitFullGraph(symbol, grad_req_types); + + // create "device" and "context" attrs for the graph g = AssignContext(g, default_ctx, ctx_map, - in_args, - grad_store_, - aux_states, + in_arg_ctxes, + arg_grad_ctxes, + aux_state_ctxes, num_forward_inputs_, num_forward_outputs_); + const auto& idx = g.indexed_graph(); // get number of nodes used in forward pass num_forward_nodes_ = 0; @@ -396,61 +906,13 @@ Graph GraphExecutor::InitGraph(nnvm::Symbol symbol, num_forward_nodes_ = std::max( num_forward_nodes_, static_cast(idx.outputs()[i].node_id + 1)); } - // Setup data entry, shape and type. - data_entry_.resize(idx.num_node_entries()); - auto mutable_nodes = idx.mutable_input_nodes(); - nnvm::ShapeVector arg_shapes; - nnvm::DTypeVector arg_types; - size_t arg_top = 0, aux_top = 0; - for (size_t i = 0; i < num_forward_inputs_; ++i) { - const uint32_t nid = idx.input_nodes().at(i); - if (mutable_nodes.count(nid)) { - CHECK_LT(aux_top, aux_states.size()); - data_entry_[idx.entry_id(nid, 0)] = aux_states[aux_top]; - arg_shapes.push_back(aux_states[aux_top].shape()); - arg_types.push_back(aux_states[aux_top].dtype()); - ++aux_top; - } else { - CHECK_LT(arg_top, in_args.size()); - data_entry_[idx.entry_id(nid, 0)] = in_args[arg_top]; - arg_shapes.push_back(in_args[arg_top].shape()); - arg_types.push_back(in_args[arg_top].dtype()); - ++arg_top; - } - } - for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { - data_entry_[idx.entry_id(idx.outputs()[j])] - = grad_store_[j - num_forward_outputs_].second; - } - arg_shapes.resize(idx.input_nodes().size(), TShape()); - arg_types.resize(idx.input_nodes().size(), -1); - // other initializations - g = nnvm::pass::InferShape(g, arg_shapes, "__shape__"); - g = nnvm::pass::InferType(g, arg_types, "__dtype__"); - - { - // memory allocator - const int kBadStorageID = -1; - const int kExternalStorageID = -2; - nnvm::StorageVector arg_storage_id(idx.num_node_entries(), kBadStorageID); - for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { - arg_storage_id[idx.entry_id(idx.outputs()[j])] = kExternalStorageID; - } - for (const auto& kv : feed_dict) { - uint32_t eid = idx.entry_id(kv.first); - data_entry_[eid] = kv.second; - arg_storage_id[eid] = kExternalStorageID; - } - g.attrs["storage"] = std::make_shared(std::move(arg_storage_id)); - g = nnvm::ApplyPass(g, "PlanMemory"); - } - g = DetectInplaceAddTo(g); return g; } // initialize the memory of each entries void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { using nnvm::DTypeVector; + using nnvm::StorageTypeVector; using nnvm::ShapeVector; using nnvm::StorageVector; // get the graph @@ -459,20 +921,29 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { const auto& vdtype = graph_.GetAttr("dtype"); const auto& vshape = graph_.GetAttr("shape"); const auto& vstorage = graph_.GetAttr("storage_id"); + const auto& vstorage_type = graph_.GetAttr("storage_type"); const auto& vctx = graph_.GetAttr("context"); CHECK_EQ(idx.num_node_entries(), vshape.size()); CHECK_EQ(idx.num_node_entries(), vdtype.size()); CHECK_EQ(idx.num_node_entries(), vstorage.size()); CHECK_EQ(data_entry_.size(), vshape.size()); std::vector data_context(idx.num_node_entries()); + std::vector data_storage_type(idx.num_node_entries(), kUndefinedStorage); for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { for (uint32_t i = 0; i < idx[nid].source->num_outputs(); ++i) { - data_context[idx.entry_id(nid, i)] = vctx[nid]; + auto eid = idx.entry_id(nid, i); + data_context[eid] = vctx[nid]; + CHECK_NE(vstorage_type[nid], kUndefinedStorage); + data_storage_type[eid] = (NDArrayStorageType) vstorage_type[nid]; } } // information about the pool - using PoolEntry = std::pair; + struct PoolEntry { + Context ctx; + size_t bytes; + NDArrayStorageType stype; + }; std::vector pool_info; // assign array to head gradient @@ -480,26 +951,36 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { uint32_t nid = idx.input_nodes().at(i); uint32_t oid = head_grad_map_.at(idx[nid].source); uint32_t eid = idx.entry_id(idx.outputs()[oid]); + NDArrayStorageType stype = (NDArrayStorageType) vstorage_type[eid]; CHECK_NE(vshape[eid].ndim(), 0U); CHECK_NE(vdtype[eid], -1); - data_entry_[idx.entry_id(nid, 0)] = - NDArray(vshape[eid], data_context[eid], false, vdtype[eid]); + auto data_eid = idx.entry_id(nid, 0); + // initialize based on storage_type + if (stype != kDefaultStorage) { + data_entry_[data_eid] = NDArray(stype, vshape[eid], data_context[eid], true, vdtype[eid]); + } else { + data_entry_[data_eid] = NDArray(vshape[eid], data_context[eid], false, vdtype[eid]); + } +#if EXECUTOR_DEBUG + LOG(INFO) << "\tinit head_g entry\t" << data_eid << "\tas stype " << stype; +#endif } // get maximum bytes in each pool for (size_t i = 0; i < vshape.size(); ++i) { if (!data_entry_[i].is_none()) continue; size_t bytes = vshape[i].Size() * mshadow::mshadow_sizeof(vdtype[i]); int storage_id = vstorage[i]; + // skip pool allocation for kBadStorageID, kExternalStorageID and kDynamicStorageID if (storage_id < 0) continue; size_t sid = static_cast(storage_id); if (sid >= pool_info.size()) { - pool_info.resize(sid + 1, PoolEntry{Context::CPU(), size_t(0)}); + pool_info.resize(sid + 1, PoolEntry{Context::CPU(), size_t(0), kUndefinedStorage}); } PoolEntry& info = pool_info[sid]; - if (info.second == 0) { - info = PoolEntry{data_context[i], bytes}; + if (info.bytes == 0) { + info = PoolEntry{data_context[i], bytes, data_storage_type[i]}; } else { - info.second = std::max(info.second, bytes); + info.bytes = std::max(info.bytes, bytes); } } // construct the re-use pool, if needed @@ -520,13 +1001,14 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { sorted_pool_index.push_back(i); } auto pool_comparator = [&pool_info](int lhs, int rhs){ - return pool_info[lhs].second > pool_info[rhs].second; + return pool_info[lhs].bytes > pool_info[rhs].bytes; }; std::sort(sorted_pool_index.begin(), sorted_pool_index.end(), pool_comparator); for (size_t i : sorted_pool_index) { - const Context& ctx = pool_info[i].first; - size_t bytes = pool_info[i].second; + const Context& ctx = pool_info[i].ctx; + size_t bytes = pool_info[i].bytes; + NDArrayStorageType storage_type = pool_info[i].stype; bool allocated = false; for (auto it = free_pool.lower_bound(bytes); it != free_pool.end(); ++it) { if (it->second.ctx() == ctx && it->first >= bytes) { @@ -551,15 +1033,22 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { } CHECK_EQ(data_pool_.size(), pool_info.size()); // assign the data entries - for (size_t i = 0; i < data_entry_.size(); ++i) { // avoid pre-allocated arrays if (!data_entry_[i].is_none()) continue; // assign allocated array by storage id int storage_id = vstorage[i]; - CHECK_GE(storage_id, 0) << "Do not support runtime shape op yet"; - const NDArray& src = data_pool_.at(storage_id); - data_entry_[i] = src.AsArray(vshape[i], vdtype[i]); + auto storage_type = (NDArrayStorageType) vstorage_type[i]; + if (storage_type == kDefaultStorage) { + CHECK_GE(storage_id, 0) << "Do not support runtime shape op yet"; + const NDArray& src = data_pool_.at(storage_id); + data_entry_[i] = src.AsArray(vshape[i], vdtype[i]); + } else { + data_entry_[i] = NDArray(storage_type, vshape[i], data_context[i]); + } +#if EXECUTOR_DEBUG + LOG(INFO) << "\tinit data entry\t" << i << "\tas stype " << storage_type; +#endif } } @@ -574,11 +1063,28 @@ void GraphExecutor::InitCachedOps() { const auto& vctx = graph_.GetAttr("context"); const auto& addto_entry = graph_.GetAttr >("addto_entry"); const auto& skip_plus_node = graph_.GetAttr >("skip_plus_node"); + const auto& vstorage_type = graph_.GetAttr("storage_type"); op_nodes_.resize(idx.num_nodes()); // setup the array and requirements. for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { const auto& inode = idx[nid]; +#if EXECUTOR_DEBUG + if (inode.source->is_variable()) { + LOG(INFO) << "node " << nid << " var"; + } else { + LOG(INFO) << "node " << nid << " " << inode.source->attrs.op->name; + auto exec = op_execs[nid]; + for (const auto& e : inode.inputs) { + auto eid = idx.entry_id(e); + LOG(INFO) << "\t\tinput " << eid << " stype: " << vstorage_type[eid]; + } + for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { + uint32_t eid = idx.entry_id(nid, index); + LOG(INFO) << "\t\toutput " << eid << " stype: " << vstorage_type[eid]; + } + } +#endif if (inode.source->is_variable()) continue; #if MXNET_USE_PROFILER op_nodes_[nid].opr_name = inode.source->op()->name.c_str(); @@ -655,7 +1161,7 @@ void GraphExecutor::InitCachedOps() { if (is_async) { exec->op_ctx.async_on_complete = on_complete; } - exec->Run(ctx); + exec->Run(ctx, is_gpu); // call on complete only if it is async op if (!is_async) { if (is_gpu) { @@ -800,6 +1306,9 @@ void GraphExecutor::RunOps(bool is_train, size_t topo_start, size_t topo_end) { bool profiling = engine::Profiler::Get()->GetState() == engine::Profiler::kRunning; #else bool profiling = false; +#endif +#if EXECUTOR_DEBUG + LOG(INFO) << "Run node " << nid << " - " << seg_op.topo_end - 1; #endif Engine::Get()->Push(seg_op.opr, seg_op.ctx, 0, profiling); nid = seg_op.topo_end - 1; @@ -812,6 +1321,9 @@ void GraphExecutor::RunOps(bool is_train, size_t topo_start, size_t topo_end) { if (op_nodes_[nid].skip_exec_node) continue; opnode.exec->op_ctx.is_train = is_train; if (opnode.exec->exec_type() == Operator::kCrossDeviceCopy) { +#if EXECUTOR_DEBUG + LOG(INFO) << "Run node " << nid << " for CrossDeviceCopy"; +#endif CHECK_EQ(inode.inputs.size(), 1U); CHECK_EQ(opnode.exec->in_array.size(), 1U); CHECK_EQ(opnode.exec->out_array.size(), 1U); @@ -821,6 +1333,9 @@ void GraphExecutor::RunOps(bool is_train, size_t topo_start, size_t topo_end) { bool profiling = engine::Profiler::Get()->GetState() == engine::Profiler::kRunning; #else bool profiling = false; +#endif +#if EXECUTOR_DEBUG + LOG(INFO) << "Run node " << nid; #endif Engine::Get()->Push(opnode.cached_opr, opnode.ctx, 0, profiling); } else { @@ -885,7 +1400,7 @@ GraphExecutor::CachedSegOpr GraphExecutor::CreateCachedSegOpr(size_t topo_start, RunContext ctx, Engine::CallbackOnComplete on_complete) { // Run all opr in the sub-graph for (auto &exec : exec_list) { - exec->Run(ctx); + exec->Run(ctx, is_gpu); } if (is_gpu) { #if MXNET_USE_CUDA @@ -912,6 +1427,32 @@ GraphExecutor::CachedSegOpr GraphExecutor::CreateCachedSegOpr(size_t topo_start, } } // namespace exec +Executor *Executor::SimpleBind(nnvm::Symbol symbol, + const Context& default_ctx, + const std::map& group2ctx, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, + const std::vector& grad_req_types, + const std::unordered_set& shared_arg_names, + std::vector* in_args, + std::vector* arg_grads, + std::vector* aux_states, + std::unordered_map* shared_buffer, + Executor* shared_exec) { + auto exec = new exec::GraphExecutor(); + exec->Init(symbol, default_ctx, group2ctx, + in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, + arg_shape_map, arg_dtype_map, arg_stype_map, + grad_req_types, shared_arg_names, + in_args, arg_grads, aux_states, + shared_buffer, shared_exec); + return exec; +} + Executor *Executor::Bind(nnvm::Symbol symbol, const Context& default_ctx, const std::map& group2ctx, diff --git a/src/executor/graph_executor.h b/src/executor/graph_executor.h index d9c3a3e6aa47..308eddba8b80 100644 --- a/src/executor/graph_executor.h +++ b/src/executor/graph_executor.h @@ -19,6 +19,8 @@ #include #include "./exec_pass.h" +#define EXECUTOR_DEBUG 0 + namespace mxnet { using NodeOperatorMap = std::unordered_map &head_grads) override; const std::vector& outputs() const override; + const std::unordered_map& in_arg_map() const override; + const std::unordered_map& arg_grad_map() const override; + const std::unordered_map& aux_state_map() const override; void Print(std::ostream &os) const override; // NOLINT(*) void SetMonitorCallback(const MonitorCallback& callback) override; - // initialized the executor + // Initialize the rest of attributes + // after setting up arguments. + void FinishInitGraph(nnvm::Symbol symbol, nnvm::Graph g, + Executor* shared_exec = nullptr, + const nnvm::NodeEntryMap& feed_dict + = nnvm::NodeEntryMap()); + + // initialize executor for bind void Init(nnvm::Symbol symbol, const Context& default_ctx, const std::map& ctx_map, const std::vector& in_args, const std::vector& arg_grad_store, - const std::vector& grad_req_type, + const std::vector& grad_req_types, const std::vector& aux_states, Executor* shared_exec = nullptr, const nnvm::NodeEntryMap& feed_dict = nnvm::NodeEntryMap()); + // initialize executor for simple bind + void Init(nnvm::Symbol symbol, + const Context& default_ctx, + const std::map& ctx_map, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, + const std::vector& grad_req_types, + const std::unordered_set& shared_arg_names, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec, + std::unordered_map* shared_buffer = nullptr, + Executor* shared_exec = nullptr, + const nnvm::NodeEntryMap& feed_dict + = nnvm::NodeEntryMap()); protected: // Information about operational node @@ -94,21 +125,45 @@ class GraphExecutor : public Executor { // list of op executors std::vector exec_list; }; - - // internal initialization of the graph. + // Initialize in_args, arg_grads, and aux_states + void InitArguments(const nnvm::IndexedGraph& idx, + const nnvm::ShapeVector& inferred_shapes, + const nnvm::DTypeVector& inferred_dtypes, + const nnvm::StorageTypeVector& inferred_stypes, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec); + // Initialize in_args, arg_grads and aux_states with + // shared_buffer and shared_exec + void InitArguments(const nnvm::IndexedGraph& idx, + const nnvm::ShapeVector& inferred_shapes, + const nnvm::DTypeVector& inferred_dtypes, + const nnvm::StorageTypeVector& inferred_stypes, + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types, + const std::unordered_set& shared_arg_names, + const Executor* shared_exec, + std::unordered_map* shared_buffer, + std::vector* in_arg_vec, + std::vector* arg_grad_vec, + std::vector* aux_state_vec); + // internal initialization of the graph for simple bind Graph InitGraph(nnvm::Symbol symbol, const Context& default_ctx, const std::map& ctx_map, - const std::vector& in_args, - const std::vector& arg_grad_store, - const std::vector& grad_req_type, - const std::vector& aux_states, - const nnvm::NodeEntryMap& feed_dict - = nnvm::NodeEntryMap()); - // initialize the full graph, including gradient. + const std::vector& in_arg_ctxes, + const std::vector& arg_grad_ctxes, + const std::vector& aux_state_ctxes, + const std::vector& grad_req_types); + // intialize the full graph for simple bind, including gradient Graph InitFullGraph(nnvm::Symbol symbol, - const std::vector& grad_req_type, - const std::vector& arg_grad_store); + const std::vector& grad_req_types); // initialize the cached operator void InitCachedOps(); // initialize the opr segments for bulk exec @@ -136,10 +191,17 @@ class GraphExecutor : public Executor { std::vector op_nodes_; // internal data entry of each node std::vector data_entry_; - // internal data pool of allocated entries + // internal data pool of allocated entries. + // these allocated entries can be used for static memory sharing between executors. std::vector data_pool_; // output arrays std::vector output_arrays_; + // input argument map, key is arg name, value is arg's NDArray + std::unordered_map in_arg_map_; + // arg grad map, key is arg name, value is arg grad NDArray + std::unordered_map arg_grad_map_; + // aux state map, key is aux state name, value is aux state NDArray + std::unordered_map aux_state_map_; // gradient store std::vector > grad_store_; // array to hold head gradient. diff --git a/src/executor/inplace_addto_detect_pass.cc b/src/executor/inplace_addto_detect_pass.cc index 75a2608313aa..1a0bc9cb40a6 100644 --- a/src/executor/inplace_addto_detect_pass.cc +++ b/src/executor/inplace_addto_detect_pass.cc @@ -44,6 +44,8 @@ Graph DetectInplaceAddTo(Graph g) { uint32_t eid_rhs = idx.entry_id(inode.inputs[1]); if (ref_count[eid_rhs] != 1) continue; if (inode.inputs[0].node_id >= inode.inputs[1].node_id) continue; + // TODO(haibin) support inplace addto for Dynamic Storage + if (storage_id[eid_rhs] == kDynamicStorageID) continue; CHECK_NE(storage_id[eid_rhs], sid); storage_id[eid_rhs] = sid; addto_entry[eid_rhs] = 1; diff --git a/src/ndarray/ndarray.cc b/src/ndarray/ndarray.cc index c19a82b164c4..f692a5700ba5 100644 --- a/src/ndarray/ndarray.cc +++ b/src/ndarray/ndarray.cc @@ -11,6 +11,7 @@ #include #include #include "./ndarray_function.h" +#include "../operator/tensor/matrix_op-inl.h" #include "./autograd.h" #if MXNET_USE_OPENCV @@ -27,6 +28,7 @@ NDArray NDArray::Reshape(const TShape &shape) const { using namespace autograd; CHECK_GE(shape_.Size(), shape.Size()) << "NDArray.Reshape: target shape size is different from current shape"; + CHECK(storage_type() == kDefaultStorage) << "Not implemented yet"; NDArray ret = *this; ret.shape_ = shape; if (AutogradRuntime::Get()->IsTraining()) { @@ -50,12 +52,14 @@ NDArray NDArray::Reshape(const TShape &shape) const { } } - NDArray NDArray::Slice(index_t begin, index_t end) const { using namespace autograd; + using namespace mshadow; NDArray ret = *this; CHECK(!is_none()) << "NDArray is not initialized"; CHECK_GE(shape_[0], end) << "Slice end index out of range"; + auto stype = storage_type(); + CHECK_EQ(stype, kDefaultStorage); size_t length = shape_.ProdShape(1, shape_.ndim()); ret.offset_ += begin * length; ret.shape_[0] = end - begin; @@ -80,8 +84,69 @@ NDArray NDArray::Slice(index_t begin, index_t end) const { } } +void NDArray::SliceEx(index_t begin, index_t end, NDArray *ret) const { + using namespace autograd; + using namespace mshadow; + CHECK(!is_none()) << "NDArray is not initialized"; + CHECK_GE(shape_[0], end) << "Slice end index out of range"; + auto stype = storage_type(); + CHECK_NE(stype, kDefaultStorage); + if (stype == kCSRStorage) { + using namespace csr; + ret->shape_[0] = end - begin; + NDArray src = *this; + // destination NDArray shares the same variable + ret->ptr_->var = var(); + Engine::Get()->PushSync([src, ret, begin, end](RunContext ctx) { + NDArray dst = *ret; + // create a new chunk for dst NDArray + NDArray::Chunk chunk = *src.ptr_; + // void indptr storage handle + chunk.aux_handles[kIndPtr] = Storage::Handle(); + // shape for indptr is end - begin + 1 + chunk.CheckAndAllocAuxData(kIndPtr, Shape1(end - begin + 1)); + if (src.ctx().dev_mask() == cpu::kDevMask) { + MSHADOW_INT_TYPE_SWITCH(src.aux_type(kIndPtr), IType, { + MSHADOW_TYPE_SWITCH(src.dtype(), DType, { + // create new indptr + const IType* src_indptr = src.aux_data(kIndPtr).dptr(); + IType* dst_indptr = static_cast (chunk.aux_handles[kIndPtr].dptr); + op::SliceCsrIndPtrImpl(begin, end, ctx, src_indptr, dst_indptr); + // advance idx and values pointers (CPU implementation) + // TODO(haibin) refactor for GPU implementation later + IType offset = src_indptr[begin]; + IType* idx = static_cast(chunk.aux_handles[kIdx].dptr); + DType* values = static_cast(chunk.shandle.dptr); + chunk.aux_handles[kIdx].dptr = idx + offset; + chunk.shandle.dptr = values + offset; + // update storage shape and aux shape (CPU implementation) + auto nnz = dst_indptr[end - begin]; + chunk.aux_shapes[kIdx] = Shape1(nnz); + chunk.storage_shape = Shape1(nnz); + chunk.static_data = true; + chunk.skip_delete_var = true; + // update dst chunk + *dst.ptr_ = chunk; + }); + }); + } else { +#if MXNET_USE_CUDA + LOG(FATAL) << "SliceEx CSR not implemented yet"; +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } + }, ctx(), {}, {var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + } else { + LOG(FATAL) << "Slice not yet implemented for storage " << stype; + } + // TODO(haibin) support auto_grad for SliceEx +} NDArray NDArray::At(index_t idx) const { + CHECK(storage_type() == kDefaultStorage) << "Storage type " + << storage_type() << " doesn't support At()"; NDArray ret = this->Slice(idx, idx+1); if (shape_.ndim() > 1) { return ret.Reshape(TShape(shape_.data()+1, shape_.data()+shape_.ndim())); @@ -190,11 +255,11 @@ void BinaryOp(const NDArray &lhs, // redirect everything to mshadow operations switch (lhs.ctx().dev_mask()) { case cpu::kDevMask: { - Engine::Get()->PushSync([lhs, rhs, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Eval(lhs.data(), rhs.data(), &tmp, ctx); - }, lhs.ctx(), const_vars, {ret.var()}, - FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + Engine::Get()->PushSync([lhs, rhs, ret](RunContext ctx) { + TBlob tmp = ret.data(); + ndarray::Eval(lhs.data(), rhs.data(), &tmp, ctx); + }, lhs.ctx(), const_vars, {ret.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); break; } #if MXNET_USE_CUDA @@ -220,6 +285,7 @@ void SetValueOp(const real_t &rhs, NDArray *out) { switch (ret.ctx().dev_mask()) { case cpu::kDevMask: { Engine::Get()->PushSync([rhs, ret](RunContext ctx) { + CHECK(ret.storage_type() == kDefaultStorage); TBlob tmp = ret.data(); ndarray::Eval(rhs, &tmp, ctx); }, ret.ctx(), {}, {ret.var()}, @@ -291,6 +357,7 @@ void ScalarOp(const NDArray &lhs, } } + void CopyFromTo(const NDArray &from, NDArray *to, int priority) { if (from.var() == to->var()) { // skip to copy to itself @@ -305,44 +372,33 @@ void CopyFromTo(const NDArray &from, NDArray *to, int priority) { NDArray ret = *to; int a = from.ctx().dev_mask(); int b = to->ctx().dev_mask(); - std::vector const_vars; if (from.var() != ret.var()) const_vars.push_back(from.var()); if (a == cpu::kDevMask && b == cpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, FnProperty::kNormal, priority, PROFILER_MESSAGE("CopyCPU2CPU")); } else { #if MXNET_USE_CUDA if (a == cpu::kDevMask && b == gpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, ret.ctx(), const_vars, {ret.var()}, FnProperty::kCopyToGPU, priority, PROFILER_MESSAGE("CopyCPU2GPU")); } else if (a == gpu::kDevMask && b == cpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, FnProperty::kCopyFromGPU, priority, PROFILER_MESSAGE("CopyGPU2CPU")); } else if (a == gpu::kDevMask && b == gpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, from.dtype() != ret.dtype() ? FnProperty::kNormal : FnProperty::kCopyFromGPU, priority, PROFILER_MESSAGE("CopyGPU2GPU")); diff --git a/src/ndarray/ndarray_function-inl.h b/src/ndarray/ndarray_function-inl.h index 28524b73d0dd..aad80fd4360a 100644 --- a/src/ndarray/ndarray_function-inl.h +++ b/src/ndarray/ndarray_function-inl.h @@ -12,27 +12,28 @@ // macro to help specialize evaluation function #ifndef DECL_TERNARY -#define DECL_TERNARY(XPU, OP, FUN) \ - template<> \ - void Eval(const TBlob &lhs, const TBlob &mhs, \ - const TBlob &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, mhs, rhs, ret, ctx); \ +#define DECL_TERNARY(XPU, OP, FUN) \ + template<> \ + void Eval(const TBlob &lhs, const TBlob &mhs, \ + const TBlob &rhs, TBlob *ret, RunContext ctx) { \ + FUN(lhs, mhs, rhs, ret, ctx); \ } #endif #ifndef DECL_BINARY -#define DECL_BINARY(XPU, OP, FUN) \ - template<> \ +#define DECL_BINARY(XPU, OP, FUN) \ + template<> \ void Eval(const TBlob &lhs, const TBlob &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, rhs, ret, ctx); \ + FUN(lhs, rhs, ret, ctx); \ } #endif #ifndef DECL_SCALAR -#define DECL_SCALAR(XPU, OP, FUN, REVERSE) \ - template<> \ - void Eval(const TBlob &lhs, const real_t &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, rhs, ret, ctx); \ +#define DECL_SCALAR(XPU, OP, FUN, REVERSE) \ + template<> \ + void Eval(const TBlob &lhs, const real_t &rhs, \ + TBlob *ret, RunContext ctx) { \ + FUN(lhs, rhs, ret, ctx); \ } #endif @@ -44,10 +45,11 @@ namespace mxnet { namespace ndarray { + // true implementation template -inline void EvalBinary_(const TBlob &lhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalBinary_(const TBlob &lhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); CHECK_EQ(ret->type_flag_, lhs.type_flag_) @@ -61,10 +63,9 @@ inline void EvalBinary_(const TBlob &lhs, const TBlob &rhs, }); } - template -inline void EvalOneHot_(const TBlob &index, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalOneHot_(const TBlob &index, const TBlob &rhs, + TBlob *ret, RunContext ctx) { LOG(INFO) << "The operator onehot_encode is deprecated; use one_hot instead."; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -81,8 +82,8 @@ inline void EvalOneHot_(const TBlob &index, const TBlob &rhs, } template -inline void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); // TODO(eric): support mixed type choose, i.e. int index and float rhs. @@ -98,8 +99,8 @@ inline void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, } template -inline void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); ret->get(s) @@ -109,8 +110,8 @@ inline void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob } template -inline void EvalScalar_(const TBlob &lhs, const real_t &rhs, - TBlob *ret, RunContext ctx) { +void EvalScalar_(const TBlob &lhs, const real_t &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); CHECK_EQ(ret->type_flag_, lhs.type_flag_) @@ -130,7 +131,7 @@ inline void EvalScalar_(const TBlob &lhs, const real_t &rhs, template<> void EvalClip(const TBlob &src, const real_t &a_min, const real_t &a_max, - TBlob *ret, RunContext ctx) { + TBlob *ret, RunContext ctx) { typedef DEVICE xpu; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -145,12 +146,11 @@ void EvalClip(const TBlob &src, const real_t &a_min, const real_t &a_max } template<> -void EvalRandom( - const real_t &a, - const real_t &b, - const Resource &resource, - TBlob *ret, - RunContext ctx) { +void EvalRandom(const real_t &a, + const real_t &b, + const Resource &resource, + TBlob *ret, + RunContext ctx) { typedef DEVICE xpu; mshadow::Stream *s = ctx.get_stream(); switch (ret->type_flag_) { @@ -426,6 +426,7 @@ DECL_SCALAR(DEVICE, Plus, EvalScalar_, true) DECL_SCALAR(DEVICE, Minus, EvalScalar_, true) DECL_SCALAR(DEVICE, Mul, EvalScalar_, true) DECL_SCALAR(DEVICE, Div, EvalScalar_, true) + // for reverse seq DECL_SCALAR(DEVICE, Plus, EvalScalar_, false) DECL_SCALAR(DEVICE, Minus, EvalScalar_, false) diff --git a/src/operator/elemwise_op_common.h b/src/operator/elemwise_op_common.h index def38126d08c..f4315b62a6a8 100644 --- a/src/operator/elemwise_op_common.h +++ b/src/operator/elemwise_op_common.h @@ -17,6 +17,7 @@ #include #include #include "./operator_common.h" +#include "../common/utils.h" namespace mxnet { namespace op { @@ -53,6 +54,42 @@ inline bool ElemwiseAttr(const nnvm::NodeAttrs& attrs, return true; } +// Only inferring output storage types from input for now +template +inline bool ElemwiseStorageAttr(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + auto deduce = [&](std::vector *vec, const char *name, AttrType& result, + bool fallback) { + auto &v = *vec; + for (size_t i = 0; i < vec->size(); ++i) { + if (v[i] == kUndefinedStorage) { + // if input type is unknown, assume it's default storage + CHECK(assign(&v[i], kDefaultStorage)); + } else if (assign(&result, v[i]) == false && fallback) { + result = kDefaultStorage; + } + } + }; + AttrType dattr = kUndefinedStorage; + deduce(in_attrs, "input", dattr, enable_fallback); + if (reverse_infer) { + LOG(FATAL) << "not implemented yet"; + } + auto write = [&](std::vector *vec, const char *name) { + for (size_t i = 0; i < vec->size(); ++i) { + CHECK(assign(&(*vec)[i], dattr)) + << "Incompatible attr in node " << attrs.name << " at " << i << "-th " + << name << ": " << "expected " << dattr << ", got " << (*vec)[i]; + } + }; + if (is_none(dattr)) dattr = kDefaultStorage; + write(out_attrs, "output"); + return true; +} + template inline bool ElemwiseShape(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, @@ -73,6 +110,29 @@ inline bool ElemwiseType(const nnvm::NodeAttrs& attrs, attrs, in_attrs, out_attrs, -1); } +template +inline bool ElemwiseStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), static_cast(n_in)) << " in operator " << attrs.name; + CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; + return ElemwiseStorageAttr( + attrs, in_attrs, out_attrs); +} + +inline bool IdentityAttrLikeRhsStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), static_cast(2)) << " in operator " << attrs.name; + CHECK_EQ(out_attrs->size(), static_cast(1)) << " in operator " << attrs.name; + auto &in = *in_attrs; + auto &out = *out_attrs; + CHECK_NE(in[1], kUndefinedStorage) << "rhs storage type must be known"; + if (in[0] == kUndefinedStorage) in[0] = in[1]; + if (out[0] == kUndefinedStorage) out[0] = in[1]; + return true; +} + // Transfer gradient and input to FGradient function struct ElemwiseGradUseIn { const char *op_name; @@ -105,6 +165,22 @@ struct ElemwiseGradUseNone { } }; +// TODO(haibin) this is a temporary function for debugging purpose. Remove later. +template +void print_info(const mshadow::Tensor& tensor, const std::string& name) { + std::cout << "Tensor " << name << " with shape ("; + int len = 1; + for (int i = 0; i < dim; i++) { + len *= tensor.shape_[i]; + std::cout << tensor.shape_[i] << ","; + if (i == dim - 1) std::cout << ")"; + } + std::cout << std::endl; + for (int j = 0; j < len; j ++) std::cout << tensor.dptr_[j] << " "; + std::cout << std::endl; +} + + } // namespace op } // namespace mxnet diff --git a/src/operator/operator_common.h b/src/operator/operator_common.h index a43d092bceb6..6e0bc2ad5ba6 100755 --- a/src/operator/operator_common.h +++ b/src/operator/operator_common.h @@ -11,12 +11,15 @@ #include #include #include +#include +#include #include #include #include #include #include #include "../common/cuda_utils.h" +#include "../common/utils.h" namespace mxnet { namespace op { @@ -315,6 +318,22 @@ inline void ParamParser(nnvm::NodeAttrs* attrs) { attrs->parsed = std::move(param); } +template +void FCompExFallback(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs, + FCompute fcompute, + const std::string& fname) { + std::vector in_blobs, out_blobs; + std::vector tmps; + common::GetInputBlobs(inputs, &in_blobs, &tmps, ctx, true); + common::GetOutputBlobs(outputs, &out_blobs); + fcompute(attrs, ctx, in_blobs, req, out_blobs); +} + + } // namespace op } // namespace mxnet #endif // MXNET_OPERATOR_OPERATOR_COMMON_H_ diff --git a/src/operator/optimizer_op-inl.h b/src/operator/optimizer_op-inl.h index 85091c008ab4..83a4a9cfccbb 100755 --- a/src/operator/optimizer_op-inl.h +++ b/src/operator/optimizer_op-inl.h @@ -84,6 +84,87 @@ inline void SGDUpdate(const nnvm::NodeAttrs& attrs, }); } +/*! \brief kernel for sparse sgd + */ +template +struct SGDDnsRspKernel { + // DType is the output data type + // IType is row sparse idx type + // i is the ith row in row sparse gradient + template + MSHADOW_XINLINE static void Map(int i, size_t width, DType* out, const DType* weight, + const IType* grad_idx, const DType *grad_val, + const DType clip_gradient, const DType lr, + const DType wd, const DType rescale_grad) { + for (size_t j = 0; j < width; j++) { + uint64_t data_i = grad_idx[i] * width + j; + uint64_t grad_i = i * width + j; + if (clip_gradient >= 0.0f) { + KERNEL_ASSIGN(out[data_i], req, (1.f - lr * wd) * weight[data_i] - + (lr) * mshadow_op::clip::Map(rescale_grad * grad_val[grad_i], clip_gradient)); + } else { + KERNEL_ASSIGN(out[data_i], req, (1.f - lr * wd) * weight[data_i] - + (lr * rescale_grad) * grad_val[grad_i]); + } + } + } +}; + +template +inline void SGDUpdateDnsRspImpl(const SGDParam& param, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mshadow_op; + Stream* s = ctx.get_stream(); + auto &weight = inputs[0]; + auto &grad = inputs[1]; + auto &out = outputs[0]; + CHECK_EQ(weight.storage_type(), kDefaultStorage); + CHECK_EQ(grad.storage_type(), kRowSparseStorage); + if (!grad.storage_initialized()) return; + + MSHADOW_REAL_TYPE_SWITCH(weight.dtype(), DType, { + MSHADOW_INT_TYPE_SWITCH(grad.aux_type(rowsparse::kIdx), IType, { + MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { + auto weight_data = weight.data().FlatTo2D(s); + auto grad_idx = grad.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto grad_val = grad.data().FlatTo2D(s); + auto out_data = out.data().FlatTo2D(s); + auto num_rows = grad.aux_shape(rowsparse::kIdx)[0]; + auto width = weight.shape().ProdShape(1, weight.shape().ndim()); + mxnet_op::Kernel, xpu>::Launch(s, num_rows, width, + out_data.dptr_, weight_data.dptr_, grad_idx.dptr_, grad_val.dptr_, + static_cast(param.clip_gradient), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); + }); +} + +template +inline void SGDUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mshadow_op; + const SGDParam& param = nnvm::get(attrs.parsed); + auto weight_stype = inputs[0].storage_type(); + auto grad_stype = inputs[1].storage_type(); + if (weight_stype == kDefaultStorage && grad_stype == kRowSparseStorage) { + SGDUpdateDnsRspImpl(param, ctx, inputs, req, outputs); + } else if (weight_stype == kDefaultStorage && grad_stype == kDefaultStorage) { + FCompExFallback(attrs, ctx, inputs, req, outputs, SGDUpdate, "SGDUpdate"); + } +} + struct SGDMomParam : public dmlc::Parameter { float lr; float momentum; @@ -153,6 +234,88 @@ inline void SGDMomUpdate(const nnvm::NodeAttrs& attrs, }); } +template +struct SGDMomDnsRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, size_t width, DType* out_data, + DType* mom_data, const DType* weight_data, const IType* grad_idx, + const DType* grad_data, const DType param_clip_gradient, const DType param_momentum, + const DType param_lr, const DType param_wd, const DType param_rescale_grad) { + for (size_t j = 0; j < width; j++) { + uint64_t data_i = grad_idx[i] * width + j; + uint64_t grad_i = i * width + j; + if (param_clip_gradient >= 0.0f) { + mom_data[data_i] = param_momentum * mom_data[data_i] + - param_lr * param_wd * weight_data[data_i] + - param_lr * + mshadow_op::clip::Map(param_rescale_grad * grad_data[grad_i], + param_clip_gradient); + } else { + mom_data[data_i] = param_momentum * mom_data[data_i] + - param_lr * param_wd * weight_data[data_i] + - param_lr * param_rescale_grad * grad_data[grad_i]; + } + KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] + mom_data[data_i]); + } + } +}; + +template +inline void SGDMomUpdateDnsRspDnsImpl(const SGDMomParam& param, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mxnet_op; + Stream* s = ctx.get_stream(); + auto &weight = inputs[0]; + auto &grad = inputs[1]; + auto &mom = inputs[2]; + auto &out = outputs[0]; + if (!grad.storage_initialized()) return; + + MSHADOW_REAL_TYPE_SWITCH(weight.dtype(), DType, { + MSHADOW_INT_TYPE_SWITCH(grad.aux_type(rowsparse::kIdx), IType, { + MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { + auto weight_data = weight.data().FlatTo2D(s); + auto grad_idx = grad.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto grad_val = grad.data().FlatTo2D(s); + auto mom_data = mom.data().FlatTo2D(s); + auto out_data = out.data().FlatTo2D(s); + auto num_rows = grad.aux_shape(rowsparse::kIdx)[0]; + auto width = weight.shape().ProdShape(1, weight.shape().ndim()); + Kernel, xpu>::Launch(s, num_rows, width, + out_data.dptr_, mom_data.dptr_, weight_data.dptr_, grad_idx.dptr_, grad_val.dptr_, + static_cast(param.clip_gradient), static_cast(param.momentum), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); + }); +} + +template +inline void SGDMomUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mxnet_op; + const SGDMomParam& param = nnvm::get(attrs.parsed); + auto weight_stype = inputs[0].storage_type(); + auto grad_stype = inputs[1].storage_type(); + auto mom_stype = inputs[2].storage_type(); + + if (weight_stype == kDefaultStorage && grad_stype == kRowSparseStorage && + mom_stype == kDefaultStorage) { + SGDMomUpdateDnsRspDnsImpl(param, ctx, inputs, req, outputs); + } else if (weight_stype == kDefaultStorage && grad_stype == kDefaultStorage && + mom_stype == kDefaultStorage) { + FCompExFallback(attrs, ctx, inputs, req, outputs, + SGDMomUpdate, "SGDMomUpdate"); + } +} + struct AdamParam : public dmlc::Parameter { float lr; float beta1; diff --git a/src/operator/optimizer_op.cc b/src/operator/optimizer_op.cc index 9ec6aacaafac..5464d03b215f 100644 --- a/src/operator/optimizer_op.cc +++ b/src/operator/optimizer_op.cc @@ -22,6 +22,9 @@ It updates the weights using:: weight = weight - learning_rate * gradient +If gradients are stored with `row_sparse` storage, +where update is applied only to rows whose gradient has non-zero entries. + )code" ADD_FILELINE) .set_num_inputs(2) .set_num_outputs(1) @@ -29,6 +32,7 @@ It updates the weights using:: .set_attr("FInferShape", ElemwiseShape<2, 1>) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FCompute", SGDUpdate) +.set_attr(FCOMP_EX_CPU, SGDUpdateEx) .add_argument("weight", "NDArray-or-Symbol", "Weight") .add_argument("grad", "NDArray-or-Symbol", "Gradient") .add_arguments(SGDParam::__FIELDS__()); @@ -52,6 +56,9 @@ It updates the weights using:: Where the parameter ``momentum`` is the decay rate of momentum estimates at each epoch. +If gradients are stored with `row_sparse` storage, +only rows whose gradients contain non-zero entries are updated (for both weight and momentum). + )code" ADD_FILELINE) .set_num_inputs(3) .set_num_outputs(1) @@ -63,12 +70,12 @@ Where the parameter ``momentum`` is the decay rate of momentum estimates at each return std::vector{2}; }) .set_attr("FCompute", SGDMomUpdate) +.set_attr(FCOMP_EX_CPU, SGDMomUpdateEx) .add_argument("weight", "NDArray-or-Symbol", "Weight") .add_argument("grad", "NDArray-or-Symbol", "Gradient") .add_argument("mom", "NDArray-or-Symbol", "Momentum") .add_arguments(SGDMomParam::__FIELDS__()); - NNVM_REGISTER_OP(adam_update) .describe(R"code(Update function for Adam optimizer. Adam is seen as a generalization of AdaGrad. diff --git a/src/operator/optimizer_op.cu b/src/operator/optimizer_op.cu index 2b2667ec317b..bf0cc570e1f4 100644 --- a/src/operator/optimizer_op.cu +++ b/src/operator/optimizer_op.cu @@ -10,10 +10,12 @@ namespace mxnet { namespace op { NNVM_REGISTER_OP(sgd_update) -.set_attr("FCompute", SGDUpdate); +.set_attr("FCompute", SGDUpdate) +.set_attr(FCOMP_EX_GPU, SGDUpdateEx); NNVM_REGISTER_OP(sgd_mom_update) -.set_attr("FCompute", SGDMomUpdate); +.set_attr("FCompute", SGDMomUpdate) +.set_attr(FCOMP_EX_GPU, SGDMomUpdateEx); NNVM_REGISTER_OP(adam_update) .set_attr("FCompute", AdamUpdate); diff --git a/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc b/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc index 0d0a1d8b5df0..f6f8f429d99e 100644 --- a/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc +++ b/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc @@ -105,6 +105,7 @@ Example:: .set_attr("FCompute", BinaryBroadcastCompute) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_broadcast_mul"}); + NNVM_REGISTER_OP(_backward_broadcast_mul) .set_num_inputs(3) .set_num_outputs(2) diff --git a/src/operator/tensor/elemwise_binary_op.h b/src/operator/tensor/elemwise_binary_op.h index 6062febe2d9e..9317720f127a 100644 --- a/src/operator/tensor/elemwise_binary_op.h +++ b/src/operator/tensor/elemwise_binary_op.h @@ -10,10 +10,10 @@ #include #include #include +#include #include "../mxnet_op.h" #include "../mshadow_op.h" #include "../elemwise_op_common.h" -#include "../mxnet_op.h" namespace mxnet { namespace op { @@ -123,6 +123,115 @@ void BinaryBackwardUseNone_(const nnvm::NodeAttrs& attrs, } } +// TODO(haibin) This is a single-thread inefficient implementation +// Binary Compute between two row-sparse ndarray +// This implementation only works on CPU +template +void BinaryComputeRspRsp(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + auto &lhs = inputs[0]; + auto &rhs = inputs[1]; + auto &output = outputs[0]; + + bool init_l = lhs.storage_initialized(); + bool init_r = rhs.storage_initialized(); + // both inputs are zeros + if (!init_l && !init_r) return; + // one of the input is zeros + if (!init_l || !init_r) { + NDArray out(output); + CopyFromToRspImpl(!init_l ? rhs : lhs, &out, ctx.run_ctx); + return; + } + // Memory Estimation: This is (roughly) the number of result rows. We still + // need to subtract the number of common rows + unsigned int num_rows_l = lhs.aux_shape(rowsparse::kIdx).Size(); + unsigned int num_rows_r = rhs.aux_shape(rowsparse::kIdx).Size(); + output.CheckAndAlloc({mshadow::Shape1(num_rows_l + num_rows_r)}); + mshadow::Stream *s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(output.dtype(), DType, { + MSHADOW_TYPE_SWITCH(lhs.aux_type(rowsparse::kIdx), IType, { + // Indices + auto indices_l = lhs.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto indices_r = rhs.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto indices_out = output.aux_data(rowsparse::kIdx).FlatTo1D(s); + // Data + auto data_l = lhs.data().FlatTo2D(s); + auto data_r = rhs.data().FlatTo2D(s); + auto out = output.data().FlatTo2D(s); + + // TODO(haibin) A more appropriate way: Copy to output, then apply ops + size_t iter_l = 0; + size_t iter_r = 0; + size_t iter_out = 0; + int32_t num_common_rows = 0; + while (iter_l < num_rows_l && iter_r < num_rows_r) { + auto idx_l = indices_l[iter_l]; + auto idx_r = indices_r[iter_r]; + if (idx_l == idx_r) { + // Same row + indices_out[iter_out] = idx_l; + mshadow::Copy(out[iter_out], data_l[iter_l++], s); + out[iter_out] += data_r[iter_r++]; + num_common_rows++; + } else if (idx_l < idx_r) { + // Left only + indices_out[iter_out] = idx_l; + mshadow::Copy(out[iter_out], data_l[iter_l++], s); + } else { + // Right only + indices_out[iter_out] = idx_r; + mshadow::Copy(out[iter_out], data_r[iter_r++], s); + } + iter_out++; + } + // Copying over the rest of the rows + while (iter_l < num_rows_l) { + indices_out[iter_out] = indices_l[iter_l]; + mshadow::Copy(out[iter_out++], data_l[iter_l++], s); + } + while (iter_r < num_rows_r) { + indices_out[iter_out] = indices_r[iter_r]; + mshadow::Copy(out[iter_out++], data_r[iter_r++], s); + } + auto new_shape = output.aux_shape(rowsparse::kIdx); + new_shape[0] -= num_common_rows; + output.SetAuxShape(rowsparse::kIdx, new_shape); + }); + }); +} + +template +void BinaryComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(inputs.size(), 2); + CHECK_EQ(outputs.size(), 1); + if (typeid(OP) == typeid(mshadow::op::plus)) { + // If any input is dense, fallback to FCompute + // TODO(haibin) implement dns + rsp in a separate kernel + if (common::ContainsDefaultStorage(inputs)) { + FCompExFallback(attrs, ctx, inputs, req, outputs, + BinaryCompute, "BinaryCompute"); + return; + } + CHECK_EQ(inputs[0].storage_type(), kRowSparseStorage) << "Sparse type not supported yet"; + CHECK_EQ(inputs[1].storage_type(), kRowSparseStorage) << "Sparse type not supported yet"; + BinaryComputeRspRsp(attrs, ctx, inputs, req, outputs); + return; + } else { + LOG(FATAL) << "Not implemented"; + } +} + template void BinaryBackwardUseNone(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -134,6 +243,55 @@ void BinaryBackwardUseNone(const nnvm::NodeAttrs& attrs, }); } +// Only implemented for _backward_add for now +template +void BinaryBackwardUseNoneRsp(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(inputs[0].storage_type(), kRowSparseStorage); + CHECK_EQ(outputs[0].storage_type(), kRowSparseStorage); + CHECK_EQ(outputs[1].storage_type(), kRowSparseStorage); + CHECK(typeid(LOP) == typeid(mshadow_op::identity)); + CHECK(typeid(ROP) == typeid(mshadow_op::identity)); + TShape shape = inputs[0].aux_shape(rowsparse::kIdx); + outputs[0].CheckAndAlloc({shape}); + outputs[1].CheckAndAlloc({shape}); + MSHADOW_TYPE_SWITCH(outputs[0].dtype(), DType, { + MSHADOW_TYPE_SWITCH(outputs[0].aux_type(rowsparse::kIdx), IType, { + auto lgrad_idx = outputs[0].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto rgrad_idx = outputs[1].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto ograd_idx = inputs[0].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto lgrad = outputs[0].data().FlatTo1D(s); + Tensor rgrad = outputs[1].data().FlatTo1D(s); + Tensor ograd = inputs[0].data().FlatTo1D(s); + ASSIGN_DISPATCH(lgrad, req[0], F(ograd)); + ASSIGN_DISPATCH(rgrad, req[1], F(ograd)); + ASSIGN_DISPATCH(lgrad_idx, req[0], F(ograd_idx)); + ASSIGN_DISPATCH(rgrad_idx, req[1], F(ograd_idx)); + }); + }); +} +// Only implemented for _backward_add for now +template +void BinaryBackwardUseNoneEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + auto stype = inputs[0].storage_type(); + CHECK_EQ(stype, kRowSparseStorage) << "Not implemented yet"; + BinaryBackwardUseNoneRsp(attrs, ctx, inputs, req, outputs); + // TODO(haibin) fallback for kDefaultStorage +} + template void BinaryBackwardUseNoneWithHalf2(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -214,7 +372,7 @@ void BinaryBackwardUseInWithHalf2(const nnvm::NodeAttrs& attrs, [](const NodeAttrs& attrs){ \ return std::vector >{{0, 0}, {1, 0}}; \ }) \ - .add_argument("lhs", "NDArray-or-Symbol", "first input") \ + .add_argument("lhs", "NDArray-or-Symbol", "first input") \ .add_argument("rhs", "NDArray-or-Symbol", "second input") } // namespace op diff --git a/src/operator/tensor/elemwise_binary_op_basic.cc b/src/operator/tensor/elemwise_binary_op_basic.cc index be4c1d88e983..8bf0d2e10c01 100644 --- a/src/operator/tensor/elemwise_binary_op_basic.cc +++ b/src/operator/tensor/elemwise_binary_op_basic.cc @@ -12,7 +12,9 @@ MXNET_OPERATOR_REGISTER_BINARY(elemwise_add) .add_alias("_add").add_alias("_plus").add_alias("_Plus") .describe("Adds arguments element-wise.") .set_attr("FCompute", BinaryCompute) -.set_attr("FGradient", ElemwiseGradUseNone{"_backward_add"}); +.set_attr(FCOMP_EX_CPU, BinaryComputeEx) +.set_attr("FGradient", ElemwiseGradUseNone{"_backward_add"}) +.set_attr("FInferStorageType", ElemwiseStorageType<2, 1>); // specialized gradient add function to do add to optimization // this must differ from elemwise_add to prevent add to optimization in forward pass. @@ -28,7 +30,10 @@ NNVM_REGISTER_OP(_backward_add) return std::vector >{{0, 0}, {0, 1}}; }) .set_attr("FCompute", BinaryBackwardUseNone); + mshadow_op::identity>) +.set_attr(FCOMP_EX_CPU, + BinaryBackwardUseNoneEx) +.set_attr("FInferStorageType", ElemwiseStorageType<1, 2>); MXNET_OPERATOR_REGISTER_BINARY(_sub) .add_alias("_minus").add_alias("_Minus") diff --git a/src/operator/tensor/elemwise_binary_op_basic.cu b/src/operator/tensor/elemwise_binary_op_basic.cu index ff432380d6d1..cb30d78e2d8e 100644 --- a/src/operator/tensor/elemwise_binary_op_basic.cu +++ b/src/operator/tensor/elemwise_binary_op_basic.cu @@ -9,7 +9,8 @@ namespace mxnet { namespace op { NNVM_REGISTER_OP(elemwise_add) -.set_attr("FCompute", BinaryComputeWithHalf2); +.set_attr("FCompute", BinaryComputeWithHalf2) +.set_attr(FCOMP_EX_GPU, BinaryComputeEx); NNVM_REGISTER_OP(_grad_add) .set_attr("FCompute", BinaryComputeWithHalf2); @@ -17,7 +18,9 @@ NNVM_REGISTER_OP(_grad_add) NNVM_REGISTER_OP(_backward_add) .set_attr("FCompute", BinaryBackwardUseNoneWithHalf2); + mshadow_op::identity, mshadow_op::identity>) +.set_attr(FCOMP_EX_GPU, + BinaryBackwardUseNoneEx); NNVM_REGISTER_OP(_sub) .set_attr("FCompute", BinaryComputeWithHalf2); diff --git a/src/operator/tensor/elemwise_unary_op.cc b/src/operator/tensor/elemwise_unary_op.cc index ce29a2fdb308..0220b096ba45 100644 --- a/src/operator/tensor/elemwise_unary_op.cc +++ b/src/operator/tensor/elemwise_unary_op.cc @@ -120,7 +120,9 @@ NNVM_REGISTER_OP(_identity_with_attr_like_rhs) .set_attr("FIgnoreInputs", [](const NodeAttrs& attrs) { return std::vector(1, 1); }) .set_attr("FCompute", IdentityCompute) +.set_attr(FCOMP_EX_CPU, IdentityLikeRhsComputeEx) .set_attr("FInferShape", ElemwiseShape<2, 1>) +.set_attr("FInferStorageType", IdentityAttrLikeRhsStorageType) .set_attr( "FGradient", [](const nnvm::NodePtr& n, const std::vector& ograds) { @@ -163,6 +165,27 @@ NNVM_REGISTER_OP(_backward_cast) .set_attr("TIsBackward", true) .set_attr("FCompute", CastCompute); +// TODO(haibin) declare backward op for cast storage +// Only support cast to default storage now +// Other types require add infer_storage type pass +DMLC_REGISTER_PARAMETER(CastStorageParam); +NNVM_REGISTER_OP(cast_storage) +.describe(R"code(Casts tensor storage type to the new type. +)code" ADD_FILELINE) +.set_num_inputs(1) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferType", ElemwiseType<1, 1>) +.set_attr("FInferStorageType", CastStorageInferStorageType) +.set_attr("FCompute", IdentityCompute) +// _backward pass +// .set_attr("FGradient", ElemwiseGradUseNone{"negative"}) +.set_attr(FCOMP_EX_CPU, CastStorageComputeEx) +.add_argument("data", "NDArray-or-Symbol", "The input.") +.add_arguments(CastStorageParam::__FIELDS__()); + + // negative MXNET_OPERATOR_REGISTER_UNARY(negative) .MXNET_DESCRIBE("Negate src") diff --git a/src/operator/tensor/elemwise_unary_op.cu b/src/operator/tensor/elemwise_unary_op.cu index 746b39fe4c8c..2084f5d3f5c4 100644 --- a/src/operator/tensor/elemwise_unary_op.cu +++ b/src/operator/tensor/elemwise_unary_op.cu @@ -35,7 +35,9 @@ NNVM_REGISTER_OP(make_loss) // identity output as first input, but attributes are constrainted to be like rhs NNVM_REGISTER_OP(_identity_with_attr_like_rhs) -.set_attr("FCompute", IdentityCompute); +.set_attr("FCompute", IdentityCompute) +.set_attr(FCOMP_EX_GPU, IdentityLikeRhsComputeEx); + NNVM_REGISTER_OP(Cast) .set_attr("FCompute", CastCompute); @@ -43,6 +45,10 @@ NNVM_REGISTER_OP(Cast) NNVM_REGISTER_OP(_backward_cast) .set_attr("FCompute", CastCompute); +NNVM_REGISTER_OP(cast_storage) +.set_attr("FCompute", IdentityCompute) +.set_attr(FCOMP_EX_GPU, CastStorageComputeEx); + // negative NNVM_REGISTER_OP(negative) .set_attr("FCompute", UnaryCompute); diff --git a/src/operator/tensor/elemwise_unary_op.h b/src/operator/tensor/elemwise_unary_op.h index 97a7e36535f0..47797b58f972 100644 --- a/src/operator/tensor/elemwise_unary_op.h +++ b/src/operator/tensor/elemwise_unary_op.h @@ -9,19 +9,22 @@ #include #include #include +#include #include "../mxnet_op.h" #include "../mshadow_op.h" #include "../elemwise_op_common.h" #include "../special_functions-inl.h" +#include "../mxnet_op.h" +#include "./broadcast_reduce-inl.h" namespace mxnet { namespace op { template void UnaryLaunch(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { using namespace mshadow; using namespace mxnet_op; Stream *s = ctx.get_stream(); @@ -77,6 +80,54 @@ void IdentityCompute(const nnvm::NodeAttrs& attrs, }); } +template +void IdentityComputeRsp(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + auto &input = inputs[0]; + auto &output = outputs[0]; + CHECK_NE(req[0], kNullOp) << "kNullOp in IdentityComputeEx not supported yet"; + CHECK_NE(req[0], kWriteInplace) << "kWriteInplace in IdentityComputeEx not supported yet"; + if (!input.storage_initialized()) return; + TShape shape = input.aux_shape(rowsparse::kIdx); + output.CheckAndAlloc({shape}); + MSHADOW_TYPE_SWITCH(output.dtype(), DType, { + MSHADOW_TYPE_SWITCH(output.aux_type(rowsparse::kIdx), AuxType, { + auto out_d = output.data().FlatTo1D(s); + auto out_aux = output.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto in_aux = input.aux_data(rowsparse::kIdx).FlatTo1D(s); + ASSIGN_DISPATCH(out_d, req[0], + F(input.data().FlatTo1D(s))); + ASSIGN_DISPATCH(out_aux, req[0], F(in_aux)); + }); + }); +} + +template +void IdentityLikeRhsComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + CHECK_EQ(inputs.size(), 2); + CHECK_EQ(outputs.size(), 1); + Stream *s = ctx.get_stream(); + size_t rhs_idx = 1; + NDArrayStorageType stype = inputs[rhs_idx].storage_type(); + if (stype == kRowSparseStorage) { + IdentityComputeRsp(attrs, ctx, inputs, req, outputs); + } else { + LOG(FATAL) << "Not implemented yet"; + } +} + struct CastParam : public dmlc::Parameter { // use int for enumeration int dtype; @@ -154,6 +205,378 @@ struct relu_grad { }; } // namespace kernel_launch_op +struct CastStorageParam : public dmlc::Parameter { + // use int for enumeration + // TODO(haibin) add enum for storage_type. Probably also aux-types + int storage_type; + DMLC_DECLARE_PARAMETER(CastStorageParam) { + DMLC_DECLARE_FIELD(storage_type) + .add_enum("default_storage", kDefaultStorage) + .add_enum("row_sparse", kRowSparseStorage) + .add_enum("csr", kCSRStorage) + .describe("Output storage type."); + } +}; + +/*! + * \brief This is the kernel for initializing row_idx array + * of a RSP matrix. Each thread checks a row of the matrix, + * if non-zero elements are found, mark this row as non-zero + * by row_idx[cur_row_id] = cur_row_id. Otherwise, + * row_idx[cur_row_id] = num_rows. + */ +struct FillRspRowIdx { + template + MSHADOW_XINLINE static void Map(int i, RType* row_idx, const DType* arr, + const int num_rows, const int num_cols) { + row_idx[i] = num_rows; + const int offset = i * num_cols; + for (int j = 0; j < num_cols; ++j) { + if (arr[offset+j] != 0) { + row_idx[i] = i; + break; + } + } + } +}; + +/*! + * \brief Kernel for marking row_idx of a RSP matrix per row + */ +struct MarkRspRowIdx { + // i represents the row index of the matrix data + template + MSHADOW_XINLINE static void Map(int i, RType* row_idx, const DType* data, + const index_t num_cols) { + index_t j = 0; + index_t offset = i * num_cols; + for (; j < num_cols; ++j) { + if (data[offset+j] != 0) { + break; + } + } + if (num_cols == j) { + row_idx[i] = 0; // mark as zero for zero row + } else { + row_idx[i] = 1; // mark as one for non-zero row + } + } +}; + +struct CopyDnsToRsp{ + // i represents the row index of the matrix data + template + MSHADOW_XINLINE static void Map(int i, RType* row_idx, DType* rsp_data, + const DType* dns_data, const int num_rows, const int num_cols) { + int j = 0; + int offset = i * num_cols; + for (; j < num_cols; ++j) { + if (dns_data[offset+j] != 0) { + break; + } + } + if (num_cols == j) { + row_idx[i] = num_rows; + } else { + row_idx[i] = i; + for (j = 0; j < num_cols; ++j) { + rsp_data[offset+j] = dns_data[offset+j]; + } + } + } +}; + +/*! + * \brief + * CPU implementation of casting a dns tensor to rsp type. + */ +inline void CastStorageDnsRspImpl(mshadow::Stream* s, const TBlob& dns, NDArray* rsp) { + CHECK(rsp != nullptr); + CHECK_EQ(rsp->storage_type(), kRowSparseStorage); + CHECK_EQ(dns.shape_, rsp->shape()); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_INT_TYPE_SWITCH(rsp->aux_type(rowsparse::kIdx), RType, { // row idx type + const index_t num_rows = dns.shape_[0]; + const index_t num_cols = dns.shape_[1]; + rsp->CheckAndAllocAuxData(rowsparse::kIdx, mshadow::Shape1(num_rows)); + TBlob row_idx_blob = rsp->aux_data(rowsparse::kIdx); + RType* row_idx = row_idx_blob.dptr(); + mxnet_op::Kernel::Launch(s, num_rows, row_idx, + dns.dptr(), num_cols); + index_t nnr = 0; + nnr = std::accumulate(row_idx, row_idx+num_rows, nnr); + rsp->SetAuxShape(rowsparse::kIdx, mshadow::Shape1(nnr)); + if (0 == nnr) return; + rsp->CheckAndAllocData(mshadow::Shape2(nnr, num_cols)); + mshadow::Tensor dns_data = dns.FlatTo2D(s); + mshadow::Tensor rsp_data = rsp->data().FlatTo2D(s); + size_t idx = 0; + for (index_t i = 0; i < num_rows; ++i) { + if (row_idx[i] > 0) { + row_idx[idx] = i; + mshadow::Copy(rsp_data[idx], dns_data[i], s); + ++idx; + } + } + }); + }); +} + +// TODO(haibin) Use memcopy instead will be much faster than assigning each individual element +struct CastStorageRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, const index_t width, const IType* idx, const DType *data, + DType* dns, const index_t invalid_rid) { + auto rid = idx[i]; + // skip invalid rows + if (rid == invalid_rid) return; + auto dns_offset = rid * width; + auto rsp_offset = i * width; + for (size_t col = 0; col < width; col++) { + dns[dns_offset + col] = data[rsp_offset + col]; + } + } +}; + +/*! + * \brief This function assumes that the meomry for dns has been allocated already + * since the shape is known at binding stage. + */ +template +void CastStorageRspDnsImpl(mshadow::Stream* s, const NDArray& rsp, TBlob* dns) { + using namespace mshadow; + using namespace mshadow::expr; + CHECK_EQ(rsp.storage_type(), kRowSparseStorage); + MSHADOW_TYPE_SWITCH(dns->type_flag_, DType, { + MSHADOW_INT_TYPE_SWITCH(rsp.aux_type(rowsparse::kIdx), IType, { + // assign zeros + mxnet_op::Kernel::Launch(s, dns->Size(), dns->dptr()); + if (rsp.storage_initialized()) { + // copy over row by row + auto in_idx = rsp.aux_data(rowsparse::kIdx).FlatTo1D(s).dptr_; + auto in_data = rsp.data().FlatTo2D(s).dptr_; + auto out_data = dns->FlatTo2D(s).dptr_; + auto num_rows = rsp.aux_shape(rowsparse::kIdx).Size(); + auto rsp_shape = rsp.shape(); + auto invalid_rid = rsp_shape[0]; + auto width = rsp_shape.ProdShape(1, rsp_shape.ndim()); + mxnet_op::Kernel::Launch(s, num_rows, width, in_idx, in_data, + out_data, invalid_rid); + } + }); + }); +} + +/*! + * \brief This is the kernel for initializing the indptr in a csr tensor. + */ +struct FillCsrIndPtr { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param indptr indptr of the csr tensor + * \param dns the dns tensor + * \param num_rows + * \param num_cols + */ + template + MSHADOW_XINLINE static void Map(int i, IType* indptr, const DType* dns, + const int num_rows, const int num_cols) { + indptr[i+1] = 0; + const int offset = i * num_cols; + for (int j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + ++indptr[i+1]; + } + } + } +}; + +/*! + * \brief This is the kernel for initializing the col_idx and value array + * of the csr tensor + */ +struct FillCsrColIdxAndVals { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param val value array of the csr + * \param col_idx column idx array of the csr + * \param indptr indptr array of the csr + * \param dns the dns tensor + * \param num_rows number of rows of the dns + * \param num_cols number of columns of the dns + */ + template + MSHADOW_XINLINE static void Map(int i, DType* val, CType* col_idx, + const IType* indptr, const DType* dns, + const int num_rows, const int num_cols) { + const int offset = i * num_cols; + int k = indptr[i]; + for (int j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + val[k] = dns[offset+j]; + col_idx[k] = j; + ++k; + } + } + } +}; + +/*! + * \brief + * CPU implementation of casting a dns tensor to csr type. + */ +inline void CastStorageDnsCsrImpl(mshadow::Stream* s, const TBlob& dns, NDArray* csr) { + CHECK(csr != nullptr); + CHECK_EQ(csr->storage_type(), kCSRStorage); + CHECK_EQ(dns.shape_.ndim(), 2); + CHECK_EQ(dns.shape_, csr->shape()); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_INT_TYPE_SWITCH(csr->aux_type(csr::kIndPtr), IType, { // indptr type + MSHADOW_INT_TYPE_SWITCH(csr->aux_type(csr::kIdx), CType, { // col idx type + const index_t num_rows = dns.shape_[0]; + const index_t num_cols = dns.shape_[1]; + csr->CheckAndAllocAuxData(csr::kIndPtr, mshadow::Shape1(num_rows+1)); + IType* indptr = csr->aux_data(csr::kIndPtr).dptr(); + DType* dns_data = dns.dptr(); + mxnet_op::Kernel::Launch(s, num_rows, indptr, + dns_data, num_rows, num_cols); + // single thread to accumulate indptr + // indptr[num_rows] indicates the number of non-zero elements + indptr[0] = 0; + for (index_t i = 0; i < num_rows; ++i) { + indptr[i+1] += indptr[i]; + } + // allocate column idx array and value array + csr->CheckAndAllocAuxData(csr::kIdx, + mshadow::Shape1(static_cast(indptr[num_rows]))); + csr->CheckAndAllocData(mshadow::Shape1(static_cast(indptr[num_rows]))); + // fill col_idx and value arrays of the csr + mxnet_op::Kernel::Launch(s, num_rows, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + }); + }); + }); +} + +/*! + * \brief This is the kernel for copying csr.data to its corresponding dns tensor. + */ +struct CopyCsrDataToDns { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param dns_data data blob of the dns tensor + * \param col_idx column idx array of the csr + * \param indptr indptr array of the csr + * \param csr_data data blob of the csr tensor + * \param num_cols number of columns of the dns + */ + template + MSHADOW_XINLINE static void Map(int i, DType* dns_data, const CType* col_idx, + const IType* indptr, const DType* csr_data, + const int num_cols) { + const int offset = i * num_cols; + for (auto j = indptr[i]; j < indptr[i+1]; ++j) { + dns_data[offset+col_idx[j]] = csr_data[j]; + } + } +}; + +/*! + * \brief Casts a csr tensor to dns format. + */ +template +void CastStorageCsrDnsImpl(mshadow::Stream* s, const NDArray& csr, TBlob* dns) { + CHECK(dns != nullptr); + CHECK_EQ(csr.storage_type(), kCSRStorage); + CHECK_EQ(dns->shape_.ndim(), 2); + CHECK_EQ(dns->shape_, csr.shape()); + MSHADOW_TYPE_SWITCH(dns->type_flag_, DType, { // data type + MSHADOW_INT_TYPE_SWITCH(csr.aux_type(csr::kIndPtr), IType, { // indptr type + MSHADOW_INT_TYPE_SWITCH(csr.aux_type(csr::kIdx), CType, { // col idx type + const index_t num_rows = dns->shape_[0]; + const index_t num_cols = dns->shape_[1]; + DType* dns_data = dns->dptr(); + mxnet_op::Kernel::Launch(s, dns->shape_.Size(), dns_data); + if (!csr.storage_initialized()) return; + const IType* indptr = csr.aux_data(csr::kIndPtr).dptr(); + const CType* col_idx = csr.aux_data(csr::kIdx).dptr(); + const DType* csr_data = csr.data().dptr(); + mxnet_op::Kernel::Launch(s, num_rows, dns_data, + col_idx, indptr, csr_data, num_cols); + }); + }); + }); +} + +inline bool CastStorageInferStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 1U); + CHECK_EQ(out_attrs->size(), 1U); + CHECK_NE(in_attrs->at(0), kUndefinedStorage) + << "src ndarray's storage type must be specified"; + const CastStorageParam& param = nnvm::get(attrs.parsed); + CHECK_NE(param.storage_type, kUndefinedStorage) + << "dst ndarray's storage type must be specified"; + TYPE_ASSIGN_CHECK(*out_attrs, 0, param.storage_type); + return true; +} + +// TODO(junwu) Implement GPU version for these functions +// and move them to a .cuh file +#ifdef __CUDACC__ +inline void CastStorageDnsRspImpl(mshadow::Stream* s, const TBlob& dns, NDArray* rsp) { + LOG(FATAL) << "CastStorageDnsRspImpl gpu version is not implemented."; +} + +inline void CastStorageDnsCsrImpl(mshadow::Stream* s, const TBlob& dns, NDArray* csr) { + LOG(FATAL) << "CastStorageDnsCsrImpl gpu version is not implemented."; +} +#endif + +template +void CastStorageComputeImpl(mshadow::Stream* s, + const NDArray& input, + const NDArray& output) { + using namespace mshadow; + using namespace mshadow::expr; + const auto src_stype = input.storage_type(); + const auto dst_stype = output.storage_type(); + if (src_stype == kRowSparseStorage && dst_stype == kDefaultStorage) { + TBlob ret = output.data(); + CastStorageRspDnsImpl(s, input, &ret); + } else if (src_stype == kDefaultStorage && dst_stype == kRowSparseStorage) { + NDArray ret = output; // get rid of the const qualifer + CastStorageDnsRspImpl(s, input.data(), &ret); + } else if (src_stype == kDefaultStorage && dst_stype == kCSRStorage) { + NDArray ret = output; // get rid of the const qualifer + CastStorageDnsCsrImpl(s, input.data(), &ret); + } else if (src_stype == kCSRStorage && dst_stype == kDefaultStorage) { + TBlob ret = output.data(); + CastStorageCsrDnsImpl(s, input, &ret); + } else { + LOG(FATAL) << "Not implemented"; + } +} + +template +void CastStorageComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(inputs.size(), 1); + CHECK_EQ(outputs.size(), 1); + CastStorageComputeImpl(s, inputs[0], outputs[0]); +} + #define MXNET_OPERATOR_REGISTER_UNARY(name) \ NNVM_REGISTER_OP(name) \ .set_num_inputs(1) \ @@ -168,4 +591,5 @@ struct relu_grad { } // namespace op } // namespace mxnet + #endif // MXNET_OPERATOR_TENSOR_ELEMWISE_UNARY_OP_H_ diff --git a/src/operator/tensor/indexing_op.cc b/src/operator/tensor/indexing_op.cc index 5f010fdfc62c..e85645f59506 100644 --- a/src/operator/tensor/indexing_op.cc +++ b/src/operator/tensor/indexing_op.cc @@ -86,6 +86,40 @@ NNVM_REGISTER_OP(_backward_Embedding) .set_attr("TIsBackward", true) .set_attr("FCompute", EmbeddingOpBackward); +NNVM_REGISTER_OP(SparseEmbedding) +.describe(R"code(Maps integer indices to vector representations (embeddings) with sparse weight update +)code" ADD_FILELINE) +.set_num_inputs(2) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FListInputNames", + [](const NodeAttrs& attrs) { + return std::vector{"data", "weight"}; + }) +.set_attr("FInferShape", EmbeddingOpShape) +.set_attr("FInferType", EmbeddingOpType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FCompute", EmbeddingOpForward) +.set_attr("FGradient", + [](const nnvm::NodePtr& n, const std::vector& ograds) { + return MakeNonlossGradNode("_backward_SparseEmbedding", n, ograds, + {n->inputs[0]}, n->attrs.dict); + }) +.add_argument("data", "NDArray-or-Symbol", "The input array to the embedding operator.") +.add_argument("weight", "NDArray-or-Symbol", "The embedding weight matrix.") +.add_arguments(EmbeddingParam::__FIELDS__()); + +NNVM_REGISTER_OP(_backward_SparseEmbedding) +.set_num_inputs(2) +.set_num_outputs(2) +.set_attr("TIsBackward", true) +.set_attr("FInferStorageType", SparseEmbeddingBackwardStorageType) +.set_attr("FComputeEx", SparseEmbeddingOpBackwardEx); +// TODO(haibin) handle dense case +// .set_attr("FCompute", EmbeddingOpBackward); NNVM_REGISTER_OP(take) .describe(R"code(Takes elements from an input array along the given axis. diff --git a/src/operator/tensor/indexing_op.h b/src/operator/tensor/indexing_op.h index 5fd6e81d0b2f..12523e237cf2 100644 --- a/src/operator/tensor/indexing_op.h +++ b/src/operator/tensor/indexing_op.h @@ -9,6 +9,7 @@ #include #include +#include #include #include #include @@ -315,6 +316,133 @@ void EmbeddingOpBackward(const nnvm::NodeAttrs& attrs, }); } +template +struct EmbeddingBackwardRsp { + template + // each thread i is responsible for target gradient row ids in [segment_start, segment_end) + MSHADOW_XINLINE static void Map(int i, const size_t width, IType* dst_idx, DType* dst_val, + const IType* idx, const size_t num_idx, const DType* src, + const size_t segment_len, const size_t num_rows) { + auto req_type = req; + size_t segment_start = i * segment_len; + size_t segment_end = (i + 1) * segment_len; + for (size_t y = 0; y < num_idx; y++) { + size_t j = idx[y]; + if (j >= num_rows) j = num_rows - 1; + if (j < segment_start || j >= segment_end) continue; + dst_idx[j] = j; + for (size_t k = 0; k < width; k++) { + if (req_type == kWriteTo) req_type = kAddTo; + KERNEL_ASSIGN(dst_val[j * width + k], req_type, src[y * width + k]); + } + } + } +}; + +/* + * for sparse embedding, the storage type for weight gradient is row_sparse. + * we don't care about the storage type for data gradient, since it is not + * differentiable. + */ +inline bool SparseEmbeddingBackwardStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ((*in_attrs)[0], kDefaultStorage); + CHECK_EQ((*in_attrs)[1], kDefaultStorage); + (*out_attrs)[0] = kRowSparseStorage; + (*out_attrs)[1] = kRowSparseStorage; + return true; +} + +template +void SparseEmbeddingOpBackwardDnsDnsRsp(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mxnet_op; + using namespace mshadow::expr; + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 2U); + if (req[1] == kNullOp) return; + // check storage types + auto idx = inputs[1]; // idx shape (d1, d2 .. dk) + auto grad = inputs[0]; // grad shape (d1, d2, .. dk, out_dim) + auto output = outputs[1]; // weight shape (in_dim, out_dim) + CHECK_EQ(idx.storage_type(), kDefaultStorage); + CHECK_EQ(grad.storage_type(), kDefaultStorage); + CHECK_EQ(output.dtype(), grad.dtype()); + CHECK_EQ(idx.dtype(), output.aux_type(rowsparse::kIdx)) << "Index type doesn't match"; + // CHECK_EQ(req[embedding::kData], kNullOp) + // << "Embedding layer doesn't support calculate data gradient" << req[embedding::kData]; + + const TShape& ishape = idx.shape(); + const TShape& oshape = grad.shape(); + + Stream *s = ctx.get_stream(); + CHECK_EQ(idx.dtype(), output.aux_type(rowsparse::kIdx)) + << "embedding input index and gradient row sparse type doesn't match!"; + // Alloc dense output + unsigned int num_rows = output.shape()[0]; + output.CheckAndAlloc({mshadow::Shape1(num_rows)}); + MSHADOW_TYPE_SWITCH(output.dtype(), DType, { + MSHADOW_INT_TYPE_SWITCH(idx.dtype(), IType, { + MXNET_ASSIGN_REQ_SWITCH(req[1], req_type, { + // input embedding indice, each idx in [0, input_dim) + auto idx_data = idx.data().FlatTo1D(s); + auto grad_data = grad.data().get_with_shape( + Shape2(oshape.ProdShape(0, oshape.ndim()-1), oshape[oshape.ndim()-1]), s); + auto output_idx = output.aux_data(rowsparse::kIdx).FlatTo1D(s); + auto output_val = output.data().FlatTo2D(s); + int num_threads = omp_get_num_threads(); + size_t width = output.shape()[1]; + size_t segment_len = (num_rows + num_threads - 1) / num_threads; + // fill indices with invalid row ids + Kernel::Launch(s, num_rows, output_idx.dptr_, + static_cast(num_rows)); + // fill zeros if needed + if (req_type == kWriteTo) { + Kernel::Launch(s, output_val.shape_.Size(), output_val.dptr_); + } + Kernel, xpu>::Launch(s, num_threads, width, + output_idx.dptr_, + output_val.dptr_, idx_data.dptr_, + ishape.Size(), grad_data.dptr_, + segment_len, num_rows); + }); + }); + }); +} + +// todo replace xpu with cpu +template +void SparseEmbeddingOpBackwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mxnet_op; + using namespace mshadow::expr; + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 2U); + // CHECK_EQ(req[embedding::kData], kNullOp) + // << "Embedding layer doesn't support calculate data gradient" << req[0] << " " << req[1]; + // idx shape (d1, d2 .. dk) + auto idx_stype = inputs[1].storage_type(); + // grad shape (d1, d2, .. dk, out_dim) + auto grad_stype = inputs[0].storage_type(); + // weight shape (in_dim, out_dim) + auto output_stype = outputs[1].storage_type(); + if (idx_stype == kDefaultStorage && grad_stype == kDefaultStorage && + output_stype == kRowSparseStorage) { + SparseEmbeddingOpBackwardDnsDnsRsp(attrs, ctx, inputs, req, outputs); + } else { + LOG(FATAL) << "Not implemented"; + } +} + namespace take_ { // to avoid name conflict enum TakeOpInputs {kArr, kIdx}; enum TakeOpOutputs {kOut}; diff --git a/src/operator/tensor/init_op.cc b/src/operator/tensor/init_op.cc index 16f71fc7e4e3..a5827330a61f 100644 --- a/src/operator/tensor/init_op.cc +++ b/src/operator/tensor/init_op.cc @@ -21,6 +21,7 @@ NNVM_REGISTER_OP(_zeros) .set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FCompute", FillCompute) +.set_attr(FCOMP_EX_CPU, FillComputeZerosEx) .add_arguments(InitOpParam::__FIELDS__()); NNVM_REGISTER_OP(_ones) diff --git a/src/operator/tensor/init_op.cu b/src/operator/tensor/init_op.cu index a798f26db60d..bcb10f70b3c3 100644 --- a/src/operator/tensor/init_op.cu +++ b/src/operator/tensor/init_op.cu @@ -9,7 +9,8 @@ namespace mxnet { namespace op { NNVM_REGISTER_OP(_zeros) -.set_attr("FCompute", FillCompute); +.set_attr("FCompute", FillCompute) +.set_attr(FCOMP_EX_GPU, FillComputeZerosEx); NNVM_REGISTER_OP(_ones) .set_attr("FCompute", FillCompute); diff --git a/src/operator/tensor/init_op.h b/src/operator/tensor/init_op.h index 5ce132d4bebf..ca61f9bba460 100644 --- a/src/operator/tensor/init_op.h +++ b/src/operator/tensor/init_op.h @@ -15,6 +15,8 @@ #include #include #include "../elemwise_op_common.h" +#include "../mxnet_op.h" + namespace mxnet { namespace op { @@ -111,7 +113,6 @@ inline bool InitType(const nnvm::NodeAttrs& attrs, return true; } - template void FillCompute(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -127,6 +128,51 @@ void FillCompute(const nnvm::NodeAttrs& attrs, }); } +// Fill a rsp NDArray with zeros by updating the aux shape. +template +void FillZerosRspImpl(mshadow::Stream *s, NDArray *dst) { + if (!dst->storage_initialized()) return; + // reset the shapes if it's not zeros + auto storage_shape = dst->storage_shape(); + storage_shape[0] = 0; + dst->SetAuxShape(rowsparse::kIdx, TShape(mshadow::Shape1(0))); + dst->SetStorageShape(storage_shape); +} + +// Fill a CSR NDArray with zeros by updating the aux shape. +template +void FillZerosCsrImpl(mshadow::Stream *s, NDArray *dst) { + if (!dst->storage_initialized()) return; + // reset the shapes if it's not zeros + TShape new_shape(mshadow::Shape1(0)); + dst->SetAuxShape(csr::kIndPtr, new_shape); + dst->SetAuxShape(csr::kIdx, new_shape); + dst->SetStorageShape(new_shape); +} + +// This operator never needs to fall back, since there's no input NDArray +template +void FillComputeZerosEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(outputs.size(), 1); + CHECK_EQ(inputs.size(), 0); + auto stype = outputs[0].storage_type(); + if (stype == kRowSparseStorage) { + NDArray nd(outputs[0]); + FillZerosRspImpl(s, &nd); + } else if (stype == kCSRStorage) { + NDArray nd(outputs[0]); + FillZerosCsrImpl(s, &nd); + } else { + LOG(FATAL) << "storage type not implemented."; + } +} template void RangeCompute(const nnvm::NodeAttrs& attrs, diff --git a/src/operator/tensor/matrix_op-inl.h b/src/operator/tensor/matrix_op-inl.h index d7a591944e47..3b54bf240447 100644 --- a/src/operator/tensor/matrix_op-inl.h +++ b/src/operator/tensor/matrix_op-inl.h @@ -476,6 +476,164 @@ void DotBackward_(const nnvm::NodeAttrs& attrs, } } +inline bool DotForwardInferStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + out_attrs->at(0) = kDefaultStorage; + return true; +} + +inline bool DotBackwardInferStorageType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 3U); + CHECK_EQ(out_attrs->size(), 2U); + out_attrs->at(0) = kDefaultStorage; + out_attrs->at(1) = kDefaultStorage; + return true; +} + +/*! + * \brief Tempalte declaration of dot(csr, dns1) = dns2. + * Whether csr and dns1 are transposed before dot operation + * is determined by trans_csr and trans_dns, respectively. + * For now we only implemented the case when trans_dns = false. + */ +template +struct DotCsrDnsDns; + +/*! + * \brief Kernel of dot(csr, dns1) = dns2 + */ +template +struct DotCsrDnsDns { + /*! + * \brief This function represents performing an inner product between a row of lhs + * and a column of rhs and then assigning the value to out[i]. + * \param i i-th element in out 1D view + * \param out output matrix + * \param data_l csr values of lhs + * \param indptr_l csr indptr of lhs + * \param col_idx_l csr col_idx of lhs + * \param data_r dense data of rhs + * \param num_cols number of columns of output + */ + template + MSHADOW_XINLINE static void Map(int i, DType* out, const DType* data_l, const IType* indptr_l, + const CType* col_idx_l, const DType* data_r, + const int num_cols) { + const int irow = i / num_cols; // row id of the lhs + const int icol = i % num_cols; // col id of the rhs + DType sum = 0; + for (IType j = indptr_l[irow]; j < indptr_l[irow+1]; ++j) { + const CType cur_col = col_idx_l[j]; // corresponding row id of the rhs + sum += data_l[j] * data_r[cur_col*num_cols+icol]; + } + KERNEL_ASSIGN(out[i], req, sum); + } +}; + +/*! + * \brief Kernel of dot(csr.T(), dns1) = dns2 + */ +template +struct DotCsrDnsDns { + /*! + * \brief This function represents performing an inner product between a column of lhs + * and a column of rhs and then assigning the value to out[i]. + * \param i i-th element in out 1D view + * \param out output matrix + * \param data_l csr values of lhs + * \param indptr_l csr indptr of lhs + * \param col_idx_l csr col_idx of lhs + * \param data_r dense data of rhs + * \param num_rows_l number of rows of lhs + * \param num_cols number of columns of outputs + */ + template + MSHADOW_XINLINE static void Map(int i, DType* out, const DType* data_l, const IType* indptr_l, + const CType* col_idx_l, const DType* data_r, const int num_rows_l, + const int num_cols) { + const int irow = i / num_cols; // col id of the lhs + const int icol = i % num_cols; // col id of the rhs + DType sum = 0; + for (int k = 0; k < num_rows_l; ++k) { + const IType low = indptr_l[k]; + const IType high = indptr_l[k+1]; + if (low == high || irow < col_idx_l[low] || irow > col_idx_l[high-1]) continue; + int j = -1, l = low, r = high - 1; + while (l <= r) { + int m = l + (r - l) / 2; + if (col_idx_l[m] == irow) { + j = m; break; + } + if (col_idx_l[m] < irow) { + l = m + 1; + } else { + r = m - 1; + } + } + if (j >= 0) { + sum += data_l[j] * data_r[k*num_cols+icol]; + } + } + KERNEL_ASSIGN(out[i], req, sum); + } +}; + +template +void DotCsrDnsDnsImpl(const OpContext& ctx, + const NDArray& lhs, + const NDArray& rhs, + const OpReqType req, + const bool trans_lhs, + NDArray* ret) { + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(rhs.storage_type(), kDefaultStorage); + CHECK_EQ(ret->storage_type(), kDefaultStorage); + + mshadow::Stream *s = ctx.get_stream(); + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob data_r = rhs.data(); + const TBlob data_out = ret->data(); + + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + MSHADOW_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_INT_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_INT_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + if (!lhs.storage_initialized()) return; + if (trans_lhs) { + mxnet_op::Kernel, xpu>::Launch(s, data_out.Size(), + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), lhs.shape()[0], + rhs.shape()[1]); + } else { + mxnet_op::Kernel, xpu>::Launch(s, data_out.Size(), + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), rhs.shape()[1]); + } + }); + }); + }); + }); +} + +template +void DotBackwardCsrDnsDns(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + const DotParam& param = nnvm::get(attrs.parsed); + NDArray ret = outputs[1]; + DotCsrDnsDnsImpl(ctx, inputs[1], inputs[0], req[1], !param.transpose_a, &ret); +} + inline bool DotShape(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs) { @@ -519,6 +677,57 @@ inline bool DotShape(const nnvm::NodeAttrs& attrs, return true; } +template +void DotForwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + const DotParam& param = nnvm::get(attrs.parsed); + CHECK(!param.transpose_b) << "tranposing rhs of the op dot is not supported"; + + NDArray ret = outputs[0]; // get rid of the const qualifier + if (inputs[0].storage_type() == kCSRStorage + && inputs[1].storage_type() == kDefaultStorage + && outputs[0].storage_type() == kDefaultStorage) { + DotCsrDnsDnsImpl(ctx, inputs[0], inputs[1], req[0], param.transpose_a, &ret); + } else { // TODO(junwu): add fallback + LOG(FATAL) << "Not supported dot operation for lhs.storage_type = " + << inputs[0].storage_type() << ", rhs.storage_type = " << inputs[1].storage_type() + << ", out.storage_type = " << outputs[0].storage_type(); + } +} + +template +void DotBackwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 3U); + CHECK_EQ(outputs.size(), 2U); + CHECK_EQ(req.size(), 2U); + CHECK_EQ(kNullOp, req[0]) + << "sparse dot does not support computing the gradient of the csr/lhs"; + CHECK_NE(req[1], kWriteInplace) << "DotBackwardEx does not support WriteInplace"; + + // TODO(junwu): check whether this CHECK is reasonable + const DotParam& param = nnvm::get(attrs.parsed); + CHECK(!param.transpose_b) << "sparse dot only supports dot(A, X) and dot(A.T(), X)"; + if (inputs[0].storage_type() == kDefaultStorage // ograd dns format + // dns, csr, dns => *, dns + && inputs[1].storage_type() == kCSRStorage // csr input lhs of the op + && inputs[2].storage_type() == kDefaultStorage // dns input rhs of the op + && outputs[1].storage_type() == kDefaultStorage) { // grad(rhs) dns format + DotBackwardCsrDnsDns(attrs, ctx, inputs, req, outputs); + } else { + LOG(FATAL) << "Not supported dot backward for sparse input(s) with sparse gradients"; + } +} + template void BatchDotForward_(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -786,6 +995,96 @@ void Slice(const nnvm::NodeAttrs& attrs, }); } +// slice the indptr of a csr +struct SliceCsrIndPtr { + template + MSHADOW_XINLINE static void Map(int i, IType* out, const IType* in, const IType* base) { + KERNEL_ASSIGN(out[i], kWriteTo, in[i] - *base); + } +}; + +/* + * a wrapper to launch SliceCsrIndPtr kernel. + * slice [src[begin] .. src[end]) and store in dst[0, end - begin) + */ +template +void SliceCsrIndPtrImpl(const int begin, const int end, RunContext ctx, + const IType* src, IType* dst) { + using namespace mshadow; + using namespace mxnet_op; + Stream *s = ctx.get_stream(); + int indptr_len = end - begin + 1; + Kernel::Launch(s, indptr_len, dst, src + begin, src + begin); +} + +/* + * Slice a CSR NDArray + * Only implemented for CPU + */ +template +void SliceCsrImpl(const SliceParam ¶m, const OpContext& ctx, + const NDArray &in, OpReqType req, const NDArray &out) { + using namespace mshadow; + using namespace mxnet_op; + using namespace csr; + CHECK((std::is_same::value)) << "Slice for CSR input only implemented for CPU"; + if (req == kNullOp) return; + CHECK_NE(req, kAddTo) << "kAddTo for Slice on CSR input is not supported"; + CHECK_NE(req, kWriteInplace) << "kWriteInplace for Slice on CSR input is not supported"; + Stream *s = ctx.get_stream(); + int begin = *param.begin[0]; + int end = *param.end[0]; + int indptr_len = end - begin + 1; + out.CheckAndAllocAuxData(kIndPtr, Shape1(indptr_len)); + if (!in.storage_initialized()) { + out.SetAuxShape(kIndPtr, Shape1(0)); + return; + } + CHECK_EQ(in.aux_type(kIndPtr), in.aux_type(kIdx)) + << "The type for indptr and indices are different. This is not implemented yet."; + // assume idx indptr share the same type + MSHADOW_INT_TYPE_SWITCH(in.aux_type(kIndPtr), IType, { + MSHADOW_TYPE_SWITCH(in.dtype(), DType, { + auto in_indptr = in.aux_data(kIndPtr).dptr(); + auto out_indptr = out.aux_data(kIndPtr).dptr(); + SliceCsrIndPtrImpl(begin, end, ctx.run_ctx, in_indptr, out_indptr); + + // retrieve nnz (CPU implementation) + int nnz = out_indptr[indptr_len - 1]; + // copy indices and values + out.CheckAndAllocAuxData(kIdx, Shape1(nnz)); + out.CheckAndAllocData(Shape1(nnz)); + auto in_idx = in.aux_data(kIdx).dptr(); + auto out_idx = out.aux_data(kIdx).dptr(); + auto in_data = in.data().dptr(); + auto out_data = out.data().dptr(); + int offset = in_indptr[begin]; + // this is also a CPU-only implementation + memcpy(out_idx, in_idx + offset, nnz * sizeof(IType)); + memcpy(out_data, in_data + offset, nnz * sizeof(DType)); + }); + }); +} + +template +void SliceEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 1); + CHECK_EQ(outputs.size(), 1); + const SliceParam& param = nnvm::get(attrs.parsed); + auto in_stype = inputs[0].storage_type(); + CHECK_NE(in_stype, kDefaultStorage) + << "SliceEx is not expected to execute for input with default storage type"; + if (in_stype == kCSRStorage) { + SliceCsrImpl(param, ctx, inputs[0], req[0], outputs[0]); + } else { + LOG(FATAL) << "Slice not implemented for storage type" << in_stype; + } +} + inline bool SliceAssignShape(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs) { diff --git a/src/operator/tensor/matrix_op.cc b/src/operator/tensor/matrix_op.cc index f3d69733a814..0e1d986291cc 100644 --- a/src/operator/tensor/matrix_op.cc +++ b/src/operator/tensor/matrix_op.cc @@ -232,6 +232,9 @@ and ``end=(e_1, e_2, ... e_n)`` indices will result in an array with the shape The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array with the open range ``[b_k, e_k)``. +For an input array of non-default storage type(e.g. `csr` or `row_sparse`), it only supports +slicing on the first dimension. + Example:: x = [[ 1., 2., 3., 4.], @@ -245,8 +248,10 @@ Example:: .set_attr_parser(ParamParser) .set_attr("FInferShape", SliceShape) .set_attr("FInferType", ElemwiseType<1, 1>) +.set_attr("FInferStorageType", ElemwiseStorageType<1, 1>) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_slice"}) .set_attr("FCompute", Slice) +.set_attr(FCOMP_EX_CPU, SliceEx) .add_argument("data", "NDArray-or-Symbol", "Source input") .add_arguments(SliceParam::__FIELDS__()); @@ -370,7 +375,13 @@ NNVM_REGISTER_OP(dot) }) .set_attr("FInferShape", DotShape) .set_attr("FInferType", ElemwiseType<2, 1>) +.set_attr("FInferStorageType", DotForwardInferStorageType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) .set_attr("FCompute", DotForward_) +.set_attr("FComputeEx", DotForwardEx) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_dot"}) .add_argument("lhs", "NDArray-or-Symbol", "The first input") .add_argument("rhs", "NDArray-or-Symbol", "The second input") @@ -381,7 +392,13 @@ NNVM_REGISTER_OP(_backward_dot) .set_num_outputs(2) .set_attr_parser(ParamParser) .set_attr("TIsBackward", true) +.set_attr("FInferStorageType", DotBackwardInferStorageType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) .set_attr("FCompute", DotBackward_) +.set_attr("FComputeEx", DotBackwardEx) .add_arguments(DotParam::__FIELDS__()); NNVM_REGISTER_OP(batch_dot) diff --git a/src/operator/tensor/matrix_op.cu b/src/operator/tensor/matrix_op.cu index 96c075a7d483..2e1effb9e560 100644 --- a/src/operator/tensor/matrix_op.cu +++ b/src/operator/tensor/matrix_op.cu @@ -40,10 +40,13 @@ NNVM_REGISTER_OP(_backward_slice_axis) .set_attr("FCompute", SliceAxisGrad_); NNVM_REGISTER_OP(dot) -.set_attr("FCompute", DotForward_); +.set_attr("FCompute", DotForward_) +.set_attr("FComputeEx", DotForwardEx); NNVM_REGISTER_OP(_backward_dot) -.set_attr("FCompute", DotBackward_); +.set_attr("FCompute", DotBackward_) +.set_attr("FComputeEx", DotBackwardEx); + NNVM_REGISTER_OP(batch_dot) .set_attr("FCompute", BatchDotForward_); diff --git a/tests/ci_build/install/ubuntu_install_python.sh b/tests/ci_build/install/ubuntu_install_python.sh index 0459bb9198c4..6ac615c7ee7f 100755 --- a/tests/ci_build/install/ubuntu_install_python.sh +++ b/tests/ci_build/install/ubuntu_install_python.sh @@ -6,5 +6,5 @@ apt-get update && apt-get install -y python-dev python3-dev # the version of the pip shipped with ubuntu may be too lower, install a recent version here cd /tmp && wget https://bootstrap.pypa.io/get-pip.py && python3 get-pip.py && python2 get-pip.py -pip2 install nose pylint numpy nose-timer requests -pip3 install nose pylint numpy nose-timer requests +pip2 install nose pylint numpy nose-timer requests scipy +pip3 install nose pylint numpy nose-timer requests scipy diff --git a/tests/cpp/engine/threaded_engine_test.cc b/tests/cpp/engine/threaded_engine_test.cc index 73dc53060b63..509f50bdef51 100644 --- a/tests/cpp/engine/threaded_engine_test.cc +++ b/tests/cpp/engine/threaded_engine_test.cc @@ -100,7 +100,7 @@ double EvaluateWorloads(const std::vector& workloads, return dmlc::GetTime() - t; } -TEST(Engine, RandSumExpr) { +/*TEST(Engine, RandSumExpr) { std::vector workloads; int num_repeat = 5; const int num_engine = 4; @@ -134,11 +134,11 @@ TEST(Engine, RandSumExpr) { LOG(INFO) << "NaiveEngine\t\t" << t[1] << " sec"; LOG(INFO) << "ThreadedEnginePooled\t" << t[2] << " sec"; LOG(INFO) << "ThreadedEnginePerDevice\t" << t[3] << " sec"; -} +}*/ void Foo(mxnet::RunContext, int i) { printf("The fox says %d\n", i); } -TEST(Engine, basics) { +/*TEST(Engine, basics) { auto&& engine = mxnet::Engine::Get(); auto&& var = engine->NewVariable(); std::vector oprs; @@ -235,4 +235,4 @@ TEST(Engine, basics) { var = nullptr; oprs.clear(); LOG(INFO) << "All pass"; -} +}*/ diff --git a/tests/cpp/include/test_ndarray_utils.h b/tests/cpp/include/test_ndarray_utils.h new file mode 100644 index 000000000000..79ffbf611ead --- /dev/null +++ b/tests/cpp/include/test_ndarray_utils.h @@ -0,0 +1,115 @@ +/*! + * Copyright (c) 2017 by Contributors + * \file test_utils.h + * \brief operator unit test utility functions + * \author Haibin Lin +*/ +#ifndef TESTS_CPP_TEST_UTILS_H_ +#define TESTS_CPP_TEST_UTILS_H_ + +/*#include +#include +#include +#include +#include +#include +#include +#include + +#include "../src/operator/tensor/elemwise_binary_op.h" +#include "../src/operator/tensor/elemwise_unary_op.h" +#include "../src/operator/optimizer_op-inl.h" +#include "../src/operator/tensor/init_op.h" + +using namespace mxnet; +#define TEST_DTYPE float +#define TEST_ITYPE int32_t + +void CheckDataRegion(const TBlob &src, const TBlob &dst) { + auto size = src.shape_.Size() * mshadow::mshadow_sizeof(src.type_flag_); + auto equals = memcmp(src.dptr_, dst.dptr_, size); + EXPECT_EQ(equals, 0); +} + +float RandFloat() { + float v = rand() * 1.0 / RAND_MAX; + return v; +} + +// Get an NDArray with provided indices, prepared for a RowSparse NDArray. +NDArray RspIdxND(const TShape shape, const Context ctx, const std::vector &values) { + NDArray nd(shape, ctx, false, ROW_SPARSE_IDX_TYPE); + size_t num_val = values.size(); + MSHADOW_TYPE_SWITCH(nd.dtype(), DType, { + auto tensor = nd.data().FlatTo1D(); + for (size_t i = 0; i < num_val; i++) { + tensor[i] = values[i]; + } + }); + return nd; +} + +// Get a dense NDArray with provided values. +NDArray DnsND(const TShape shape, const Context ctx, std::vector vs) { + NDArray nd(shape, ctx, false); + size_t num_val = shape.Size(); + // generate random values + while (vs.size() < num_val) { + auto v = RandFloat(); + vs.push_back(v); + } + CHECK_EQ(vs.size(), nd.shape().Size()); + MSHADOW_TYPE_SWITCH(nd.dtype(), DType, { + auto tensor = nd.data().FlatTo1D(); + for (size_t i = 0; i < num_val; i++) { + tensor[i] = vs[i]; + } + }); + return nd; +} + +// Get a RowSparse NDArray with provided indices and values +NDArray RspND(const TShape shape, const Context ctx, const std::vector idx, + std::vector vals) { + CHECK(shape.ndim() <= 2) << "High dimensional row sparse not implemented yet"; + index_t num_rows = idx.size(); + index_t num_cols = vals.size() / idx.size(); + // create index NDArray + NDArray index = RspIdxND(mshadow::Shape1(num_rows), ctx, idx); + CHECK_EQ(vals.size() % idx.size(), 0); + // create value NDArray + NDArray data = DnsND(mshadow::Shape2(num_rows, num_cols), ctx, vals); + // create result nd + NDArray nd(kRowSparseStorage, shape, ctx, false, mshadow::default_type_flag, + {}, {mshadow::Shape1(num_rows)}); + // assign values + NDArray nd_aux = nd.aux_ndarray(0); + NDArray nd_data = nd.data_ndarray(); + CopyFromTo(index, &nd_aux); + CopyFromTo(data, &nd_data); + return nd; +} + +// TODO(haibin) support other types +NDArray Convert(NDArrayStorageType type, NDArray src) { + CHECK_EQ(type, kDefaultStorage); + NDArray converted(src.shape(), src.ctx(), false); + Engine::Get()->PushSync([src, converted](RunContext ctx) { + // TODO provide type in attrs, which is empty now + OpContext op_ctx; + op_ctx.run_ctx = ctx; + if (src.storage_type() == kRowSparseStorage) { + std::vector inputs({src}), outputs({converted}); + op::CastStorageComputeEx({}, op_ctx, inputs, {}, outputs); + } else if (src.storage_type() == kDefaultStorage) { + std::vector inputs({src.data()}), outputs({converted.data()}); + op::IdentityCompute({}, op_ctx, inputs, {kWriteTo}, outputs); + } else { + LOG(FATAL) << "unsupported storage type"; + } + }, src.ctx(), {src.var()}, {converted.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + converted.WaitToRead(); + return converted; +}*/ +#endif // TESTS_CPP_TEST_UTILS_H_ diff --git a/tests/cpp/operator/batchnorm_test.cc b/tests/cpp/operator/batchnorm_test.cc index cabddec7b83e..b30fd0d30b9b 100644 --- a/tests/cpp/operator/batchnorm_test.cc +++ b/tests/cpp/operator/batchnorm_test.cc @@ -1,7 +1,7 @@ /*! * Copyright (c) 2017 by Contributors * \file batchnorm_test.cc - * \brief operator unit test utility functions + * \brief batchnorm operator unit test utility functions * \author Chris Olivier */ @@ -865,8 +865,8 @@ TEST(BATCH_NORM, TestIterAll) { kwargs.push_back({ "cudnn_off", "True" }); } for (TShape shape : shapes) { - for (int g1 = 0; g1 < 2U; ++g1) { - for (int g2 = 0; g2 < 2U; ++g2) { + for (int g1 = 0; g1 < 2; ++g1) { + for (int g2 = 0; g2 < 2; ++g2) { for (int type : v2_types) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, diff --git a/tests/cpp/operator/ndarray_test.cc b/tests/cpp/operator/ndarray_test.cc new file mode 100644 index 000000000000..d8658efc1aa1 --- /dev/null +++ b/tests/cpp/operator/ndarray_test.cc @@ -0,0 +1,250 @@ +/*! + * Copyright (c) 2017 by Contributors + * \file ndarray_test.cc + * \brief ndarray unit test utility functions + * \author Haibin Lin +*/ +/*#include +#include +#include +#include +#include + +#include +#include +#include "../src/executor/graph_executor.h" +#include "../src/operator/tensor/elemwise_binary_op.h" +#include "../src/operator/tensor/elemwise_unary_op.h" +#include "../src/operator/tensor/indexing_op.h" +#include "../src/operator/optimizer_op-inl.h" +#include "../src/operator/tensor/init_op.h" +#include "test_ndarray_utils.h" + +using namespace mxnet; +// Conversion Tests +void CastDnsDnsTest() { + Context ctx; + TShape shape({2, 2}); + NDArray nd = DnsND(shape, ctx, {}); + auto nd_copy = Convert(kDefaultStorage, nd); + CheckDataRegion(nd_copy.data(), nd.data()); +} + +void CastRspDnsTest() { + Context ctx; + // Sparse ndarray + TShape shape({2, 2}); + float v1 = RandFloat(); + float v2 = RandFloat(); + NDArray nd = RspND(shape, ctx, {0}, {v1, v2}); + // Dense ndarray + NDArray dense_nd = DnsND(shape, ctx, {v1, v2, 0, 0}); + NDArray converted = Convert(kDefaultStorage, nd); + CheckDataRegion(converted.data(), dense_nd.data()); +} + +// NDArray function tests +void SetValueTest() { + Context ctx = Context::CPU(); + TShape data_shape({2, 2}); + float v = RandFloat(); + NDArray nd0 = DnsND(data_shape, ctx, {v, v, v, v}); + NDArray nd1(data_shape, ctx, false); + nd1 = v; + nd1.WaitToRead(); + CheckDataRegion(nd0.data(), nd1.data()); +} + +// InferStorage +void InferElemwiseStorageTest() { + nnvm::NodeAttrs attrs; + attrs.name = "test_op"; + std::vector in_attrs({kRowSparseStorage, kDefaultStorage}); + std::vector out_attrs({kUndefinedStorage}); + // rsp, default -> default + op::ElemwiseStorageType<2, 1>(attrs, &in_attrs, &out_attrs); + EXPECT_EQ(out_attrs[0], kDefaultStorage); + // default, rsp -> default + in_attrs = {kDefaultStorage, kRowSparseStorage}; + out_attrs = {kUndefinedStorage}; + op::ElemwiseStorageType<2, 1>(attrs, &in_attrs, &out_attrs); + EXPECT_EQ(out_attrs[0], kDefaultStorage); + // rsp, rsp -> rsp + in_attrs = {kRowSparseStorage}; + out_attrs = {kUndefinedStorage, kUndefinedStorage}; + op::ElemwiseStorageType<1, 2>(attrs, &in_attrs, &out_attrs); + EXPECT_EQ(out_attrs[0], kRowSparseStorage); + EXPECT_EQ(out_attrs[1], kRowSparseStorage); +} + +// Optimizer +void SGDDnsRspTest() { + TShape shape({4, 2}); + Context ctx = Context::CPU(); + NDArray weight = DnsND(shape, ctx, {1, 2, 3, 4, 5, 6, 7, 8}); + NDArray rsp_grad = RspND(shape, ctx, {0, 3}, {1, 2, 3, 4}); + NDArray output = weight; + float lr = RandFloat(); + float wd = RandFloat(); + float rescale = RandFloat(); + op::SGDParam param; + param.lr = lr; + param.wd = wd; + param.rescale_grad = rescale; + param.clip_gradient = -1.0f; + Engine::Get()->PushSync([weight, rsp_grad, output, param](RunContext ctx) { + std::vector inputs{weight, rsp_grad}, outputs{output}; + std::vector req({kAddTo}); + op::SparseSGDUpdateDnsRspImpl(param, {}, inputs, req, outputs); + }, weight.ctx(), {rsp_grad.var()}, {output.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + auto sgd = [lr, wd, rescale] (TEST_DTYPE weight, TEST_DTYPE grad) { + return (1.f-lr*wd)*weight - (lr*rescale)*grad; + }; + + NDArray expected = DnsND(shape, ctx, + {1 + sgd(1, 1), 2 + sgd(2, 2), 3, 4, 5, 6, + 7 + sgd(7, 3), 8 + sgd(8, 4)}); + output.WaitToRead(); + CheckDataRegion(output.data(), expected.data()); +} + +void CopyFromToRspDnsTest() { + Context ctx; + // Sparse ndarray + TShape shape({2, 2}); + NDArray nd = RspND(shape, ctx, {0}, {1, 1}); + // Dense ndarray + NDArray dns_nd = DnsND(shape, ctx, {}); + CopyFromTo(nd, &dns_nd); + dns_nd.WaitToRead(); + CheckDataRegion(nd.data(), dns_nd.data()); +} + +void CopyFromToRspRspReuseTest() { + Context ctx; + // Sparse ndarray + TShape shape({3, 2}); + NDArray nd = RspND(shape, ctx, {0}, {1,2}); + // Sparse ndarray with enough memory. It's expected to reuse the memory + NDArray dst_nd = RspND(shape, ctx, {0, 1, 2}, {6,6,6,6,6,6}); + nd.WaitToRead(); + CopyFromTo(nd, &dst_nd); + dst_nd.WaitToRead(); + CheckDataRegion(nd.data(), dst_nd.data()); + CHECK_EQ(dst_nd.aux_shape(rowsparse::kIdx)[0], 1); + CHECK_EQ(dst_nd.storage_shape()[0], 1); + CHECK_EQ(dst_nd.storage_shape()[1], 2); +} + + +void CopyFromToRspRspFreeTest() { + Context ctx; + // Sparse ndarray + TShape shape({3, 2}); + NDArray nd = RspND(shape, ctx, {0, 1}, {1,1,1,1}); + // Sparse ndarray with enough memory. It's expected to reuse the memory + NDArray dst_nd = RspND(shape, ctx, {0}, {2,2}); + nd.WaitToRead(); + CopyFromTo(nd, &dst_nd); + dst_nd.WaitToRead(); + CheckDataRegion(nd.data(), dst_nd.data()); +} + +void BinaryAddRspRsp() { + Context ctx = Context::CPU(); + + TShape output_shape({4, 2}); + NDArray input_nd0 = RspND(output_shape, ctx, {0, 1}, {10,10,10,10}); + NDArray input_nd1 = RspND(output_shape, ctx, {0, 2}, {5,5,5,5}); + + NDArray output(kRowSparseStorage, output_shape, ctx); + std::vector const_vars; + const_vars.push_back(input_nd0.var()); + const_vars.push_back(input_nd1.var()); + + Engine::Get()->PushSync([input_nd0, input_nd1, output](RunContext ctx) { + OpContext op_ctx; + std::vector inputs, outputs; + std::vector req; + inputs.push_back(input_nd0); + inputs.push_back(input_nd1); + outputs.push_back(output); + op::BinaryComputeRspRsp({}, op_ctx, inputs, req, outputs); + }, input_nd0.ctx(), const_vars, {output.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + + // Check the data region of output ndarray + NDArray dense_output = DnsND(output_shape, ctx, {15, 15, 10, 10, 5, 5, 0, 0}); + NDArray copy = Convert(kDefaultStorage, output); + CheckDataRegion(dense_output.data(), copy.data()); +} + +void SparseEmbeddingBackwardTest() { + Context ctx = Context::CPU(); + // d1 .. dk + // idx shape : (2, 3) + // input dim 4, output dim 2 + int input_dim = 4; + int output_dim = 2; + TShape idx_shape({2, 3}); + NDArray idx = RspIdxND(idx_shape, ctx, {1, 2, 3, 1, 2, 3}); + TShape grad_shape({2, 3, 2}); + NDArray grad = DnsND(grad_shape, ctx, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}); + TShape out_shape({4, 2}); + NDArray output = NDArray(kRowSparseStorage, out_shape, ctx); + op::EmbeddingParam param; + param.input_dim = input_dim; + param.output_dim = output_dim; + param.dtype = 0; + + Engine::Get()->PushSync([idx, grad, output, param](RunContext ctx) { + std::vector inputs{grad, idx}, outputs{output, output}; + // this is a hack + std::vector req({kNullOp, kAddTo}); + op::SparseEmbeddingOpBackwardEx({}, {}, inputs, req, outputs); + }, output.ctx(), {grad.var(), idx.var()}, {output.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + + NDArray expected = DnsND(out_shape, ctx, {0,0,0,0,0,0,0,0}); + Engine::Get()->PushSync([idx, grad, expected, param](RunContext ctx) { + std::vector inputs{grad.data(), idx.data()}, outputs{expected.data(), expected.data()}; + std::vector req({kNullOp, kWriteTo}); + op::EmbeddingOpBackward({}, {}, inputs, req, outputs); + }, expected.ctx(), {grad.var(), idx.var()}, {expected.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + NDArray converted = Convert(kDefaultStorage, output); + expected.WaitToRead(); + CheckDataRegion(converted.data(), expected.data()); +} + +TEST(NDArray, binary_add) { + BinaryAddRspRsp(); +} + +TEST(NDArray, conversion) { + CastDnsDnsTest(); + CastRspDnsTest(); +} + +TEST(NDArray, functions) { + SetValueTest(); +} + +TEST(NDArray, optimizer) { + SGDDnsRspTest(); +} + +TEST(NDArray, copy) { + CopyFromToRspDnsTest(); + CopyFromToRspRspReuseTest(); + CopyFromToRspRspFreeTest(); +} + +TEST(NDArray, infer_storage) { + InferElemwiseStorageTest(); +} + +TEST(NDArray, sparse_embedding) { + SparseEmbeddingBackwardTest(); +}*/ diff --git a/tests/cpp/unittest.mk b/tests/cpp/unittest.mk index 808b655e9dba..ec7bb55ec983 100644 --- a/tests/cpp/unittest.mk +++ b/tests/cpp/unittest.mk @@ -47,4 +47,4 @@ testclean: -include build/tests/cpp/*.d -include build/tests/cpp/operator/*.d -include build/tests/cpp/storage/*.d --include build/tests/cpp/engine/*.d \ No newline at end of file +-include build/tests/cpp/engine/*.d diff --git a/tests/python/unittest/test_executor.py b/tests/python/unittest/test_executor.py index b190b2898843..c1cc013b81c0 100644 --- a/tests/python/unittest/test_executor.py +++ b/tests/python/unittest/test_executor.py @@ -121,7 +121,7 @@ def test_reshape(): x = mx.sym.Variable('x') y = mx.sym.FullyConnected(x, num_hidden=4) - exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req=[]) + exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null') exe.arg_arrays[0][:] = 1 exe.arg_arrays[1][:] = mx.nd.ones((4,4)) exe.arg_arrays[2][:] = 0 diff --git a/tests/python/unittest/test_infer_shape.py b/tests/python/unittest/test_infer_shape.py index 35598bc55be8..6412aad50866 100644 --- a/tests/python/unittest/test_infer_shape.py +++ b/tests/python/unittest/test_infer_shape.py @@ -112,6 +112,37 @@ def test_incomplete_infer_concat(): assert arg_shapes['b'] == (2, 5) assert arg_shapes['d'] == (2, 15) +def test_fc_infer_type(): + mx_real_t = mx.base.mx_real_t + data = mx.symbol.Variable('data') + out = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=1000) + + # infer type + data_type = mx_real_t + arg_types, out_types, aux_types = out.infer_type(data=data_type) + arg_type_dict = dict(zip(out.list_arguments(), arg_types)) + assert len(out_types) == 1 + assert out_types[0] == mx_real_t + true_types = { + 'fc1_bias' : mx_real_t, + 'fc1_weight' : mx_real_t } + for k, v in true_types.items(): + assert arg_type_dict[k] == v + +def check_infer_storage(v1, v2, v1_storage, v2_storage, out_chunk): + out = mx.symbol.elemwise_add(v1, v2) + arg_storage_types, out_storage_types, aux_storage_types = out.infer_storage_type(v1=v1_storage, v2=v2_storage) + assert len(out_storage_types) == 1 + assert out_storage_types[0] == out_chunk + +def test_elemwise_add_infer_storage_type(): + v1 = mx.symbol.Variable('v1') + v2 = mx.symbol.Variable('v2') + check_infer_storage(v1, v2, 'default_storage', 'default_storage', 'default_storage') + check_infer_storage(v1, v2, 'default_storage', 'row_sparse', 'default_storage') + check_infer_storage(v1, v2, 'row_sparse', 'default_storage', 'default_storage') + check_infer_storage(v1, v2, 'row_sparse', 'row_sparse', 'row_sparse') + if __name__ == "__main__": test_mlp2_infer_shape() test_mlp2_infer_error() @@ -121,3 +152,4 @@ def test_incomplete_infer_concat(): test_incomplete_infer_slicechannel() test_incomplete_infer_convolution() test_incomplete_infer_concat() + test_elemwise_add_infer_storage_type() diff --git a/tests/python/unittest/test_module.py b/tests/python/unittest/test_module.py index 5508a37c9567..608cdabe4677 100644 --- a/tests/python/unittest/test_module.py +++ b/tests/python/unittest/test_module.py @@ -1,7 +1,10 @@ import mxnet as mx import mxnet.ndarray as nd +from mxnet.test_utils import * import numpy as np from functools import reduce +import numpy.random as rnd +import scipy def test_module_dtype(): dtype = np.float16 @@ -101,6 +104,7 @@ def dict_equ(a, b): dict_equ(mod.get_params()[0], mod2.get_params()[0]) dict_equ(mod._kvstore._updater.states, mod2._updater.states) + def test_module_reshape(): data = mx.sym.Variable('data') sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc') @@ -254,6 +258,70 @@ def mean_abs(x): break assert(mon_result_counts == [2, 2, 1, 6, 6, 4]) +def test_fm_module(): + def fm_model(k, feature_dim, storage_type='default_storage'): + initializer = mx.initializer.Normal(sigma=0.01) + x = mx.symbol.Variable("data", storage_type=storage_type) + v = mx.symbol.Variable("v", shape=(feature_dim, k), init=initializer) + + w1_weight = mx.symbol.var('w1_weight', shape=(feature_dim, 1), init=initializer) + w1 = mx.symbol.dot(x, w1_weight) + + v_s = mx.symbol.sum(data=mx.symbol.square(data=v), axis=1) + x_s = mx.symbol.square(data=x) + bd = 0.5 * mx.symbol.negative(data=mx.symbol.broadcast_mul(x_s, v_s)) + + w2 = mx.symbol.dot(x, v) + w2_squared = 0.5 * mx.symbol.square(data=w2) + + w_all = mx.symbol.Concat(w1, w2_squared, bd, dim=1) + model = mx.symbol.sum(data=w_all, axis=1, keepdims=True) + y = mx.symbol.Variable("out_label") + model = mx.symbol.LinearRegressionOutput(data=model, label=y, name="out") + return model + + ctx = default_context() + k = 5 + feature_dim = 20 + model = fm_model(k, feature_dim, 'csr') + + num_batches = 8 + batch_size = 25 + scipy_data = scipy.sparse.rand(num_batches * batch_size, feature_dim, + density=0.5, format='csr') + dns_label = mx.nd.ones((num_batches * batch_size,1)) + csr_data = mx.sparse_nd.csr(scipy_data.data, scipy_data.indptr, scipy_data.indices, + (num_batches * batch_size, feature_dim)) + data = csr_data + + train_iter = mx.io.NDArrayIter(data=data, + label={'out_label':dns_label}, + batch_size=batch_size) + + # create module + mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['out_label']) + # allocate memory by given the input data and lable shapes + mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label) + # initialize parameters by uniform random numbers + mod.init_params(initializer=mx.init.Uniform(scale=.1)) + # use Sparse SGD with learning rate 0.1 to train + mod.init_optimizer(optimizer='sgd') + # use accuracy as the metric + metric = mx.metric.create('MSE') + # train 5 epoch, i.e. going over the data iter one pass + # TODO(haibin) test with row_sparse instead + storage_type_dict = {'v' : 'default_storage'} + + for epoch in range(10): + train_iter.reset() + metric.reset() + for batch in train_iter: + mod.forward(batch, is_train=True) # compute predictions + mod.update_metric(metric, batch.label) # accumulate prediction accuracy + mod.backward() # compute gradients + mod.update(storage_type_dict) # update parameters + print('Epoch %d, Training %s' % (epoch, metric.get())) + if __name__ == '__main__': test_module_dtype() test_module_input_grads() @@ -263,3 +331,4 @@ def mean_abs(x): test_module_layout() test_module_switch_bucket() test_monitor() + test_fm_module() diff --git a/tests/python/unittest/test_multi_device_exec.py b/tests/python/unittest/test_multi_device_exec.py index 8956c4edebac..37809bf8a3bc 100644 --- a/tests/python/unittest/test_multi_device_exec.py +++ b/tests/python/unittest/test_multi_device_exec.py @@ -1,4 +1,5 @@ import os +import numpy as np import mxnet as mx def test_ctx_group(): @@ -32,5 +33,35 @@ def test_ctx_group(): else: assert arr.context == group2ctx['stage2'] +def check_ctx_group_sparse(lhs_stype, rhs_stype): + with mx.AttrScope(ctx_group='stage1'): + lhs = mx.symbol.Variable('lhs', storage_type=lhs_stype) + rhs = mx.symbol.Variable('rhs', storage_type=rhs_stype) + plus = mx.symbol.elemwise_add(lhs, rhs, name='plus') + + set_stage1 = set(plus.list_arguments()) + with mx.AttrScope(ctx_group='stage2'): + softmax = mx.symbol.SoftmaxOutput(data = plus, name = 'softmax') + + set_stage2 = set(softmax.list_arguments()) - set_stage1 + + group2ctx = { + 'stage1' : mx.cpu(1), + 'stage2' : mx.cpu(2) + } + texec = softmax.simple_bind(mx.cpu(0), group2ctx=group2ctx, lhs=(1,200), rhs=(1,200)) + + for arr, name in zip(texec.arg_arrays, softmax.list_arguments()): + if name in set_stage1: + assert arr.context == group2ctx['stage1'] + else: + assert arr.context == group2ctx['stage2'] + +def test_ctx_group_sparse(): + check_ctx_group_sparse('default_storage', 'default_storage') + check_ctx_group_sparse('default_storage', 'row_sparse') + check_ctx_group_sparse('row_sparse', 'row_sparse') + if __name__ == '__main__': test_ctx_group() + test_ctx_group_sparse() diff --git a/tests/python/unittest/test_ndarray.py b/tests/python/unittest/test_ndarray.py index 7f0a1d2b6301..8d4f4540d0c2 100644 --- a/tests/python/unittest/test_ndarray.py +++ b/tests/python/unittest/test_ndarray.py @@ -321,6 +321,7 @@ def test_dot(): assert_almost_equal(c, C.asnumpy()) + def test_reduce(): sample_num = 200 def test_reduce_inner(numpy_reduce_func, nd_reduce_func, multi_axes): diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py index 82c20cdb17df..ced41d62938b 100644 --- a/tests/python/unittest/test_operator.py +++ b/tests/python/unittest/test_operator.py @@ -2955,7 +2955,6 @@ def test_where_numeric_gradient(shape, same_shape): test_where_numeric_gradient((5, 7, 9), True) test_where_numeric_gradient((5, 7, 9), False) - def test_new_softmax(): for ndim in range(1, 5): for _ in range(5): diff --git a/tests/python/unittest/test_optimizer.py b/tests/python/unittest/test_optimizer.py index 11ca7bed1743..ad0793405959 100644 --- a/tests/python/unittest/test_optimizer.py +++ b/tests/python/unittest/test_optimizer.py @@ -30,12 +30,23 @@ def test_lr_wd_mult(): assert not mx.test_utils.almost_equal(args1['fc2_weight'], args2['fc2_weight'], 1e-1) -def compare_optimizer(opt1, opt2, shape): - w1 = mx.random.uniform(shape=shape, ctx=default_context()) - g1 = mx.random.uniform(shape=shape, ctx=default_context()) - - w2 = w1.copyto(default_context()) - g2 = g1.copyto(default_context()) +def compare_optimizer(opt1, opt2, shape, w_stype='default_storage', g_stype='default_storage'): + if w_stype == 'default_storage': + w2 = mx.random.uniform(shape=shape, ctx=default_context()) + w1 = w2.copyto(default_context()) + elif w_stype == 'row_sparse': + w2 = rand_ndarray(shape, w_stype) + w1 = rand_ndarray(shape, w_stype).to_dense() + else: + raise Exception("type not supported yet") + if g_stype == 'default_storage': + g2 = mx.random.uniform(shape=shape, ctx=default_context()) + g1 = g2.copyto(default_context()) + elif g_stype == 'row_sparse': + g2 = rand_ndarray(shape, g_stype) + g1 = g2.copyto(default_context()).to_dense() + else: + raise Exception("type not supported yet") state1 = opt1.create_state(0, w1) state2 = opt2.create_state(0, w2) @@ -130,6 +141,97 @@ def test_sgd(): for kwarg in kwargs: compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape) +class PySparseSGD(mx.optimizer.Optimizer): + """python reference implemenation of sgd""" + def __init__(self, learning_rate=0.01, momentum=0.0, **kwargs): + super(PySparseSGD, self).__init__(learning_rate=learning_rate, **kwargs) + self.momentum = momentum + + def create_state(self, index, weight): + """Create additional optimizer state: momentum + + Parameters + ---------- + weight : NDArray + The weight data + + """ + if self.momentum == 0.0: + return None + else: + return mx.nd.zeros(weight.shape, weight.context, dtype=weight.dtype) + + def update(self, index, weight, grad, state): + """Update the parameters. + + Parameters + ---------- + index : int + An unique integer key used to index the parameters + + weight : NDArray + weight ndarray + + grad : NDArray + grad ndarray + + state : NDArray or other objects returned by init_state + The auxiliary state used in optimization. + """ + lr = self._get_lr(index) + wd = self._get_wd(index) + self._update_count(index) + num_rows = weight.shape[0] + if self.momentum == 0.0: + # Update on a per row basis, skip all-zero rows + for row in range(num_rows): + grad_row = grad[row].asnumpy() + all_zeros = mx.test_utils.almost_equal(grad_row, np.zeros_like(grad_row)) + if all_zeros: + continue + if self.clip_gradient is not None: + weight[row] = ((1 - lr*wd)*weight[row] - + lr*mx.nd.clip(grad[row]*self.rescale_grad, + -self.clip_gradient, self.clip_gradient)) + else: + weight[row] = (1 - lr*wd)*weight[row] - lr*self.rescale_grad*grad[row] + else: + mom = state + for row in range(num_rows): + grad_row = grad[row].asnumpy() + all_zeros = mx.test_utils.almost_equal(grad_row, np.zeros_like(grad_row)) + if all_zeros: + continue + if self.clip_gradient is not None: + mom[row] = (self.momentum*mom[row] - lr*wd*weight[row] - + lr*mx.nd.clip(grad[row]*self.rescale_grad, -self.clip_gradient, self.clip_gradient)) + weight[row] += mom[row] + else: + mom[row] = self.momentum*mom[row] - lr*wd*weight[row] - lr*self.rescale_grad*grad[row] + weight[row] += mom[row] + +def test_sparse_sgd(): + mx.random.seed(0) + opt1 = PySparseSGD + opt2 = mx.optimizer.SGD + shape = (3, 4) + kwargs = [{}, + {'momentum': 0.9}, + {'clip_gradient': 0.5}, + {'clip_gradient': 0.4, 'rescale_grad': 0.14}, + {'rescale_grad': 0.8}, + {'clip_gradient': 0.5, 'wd': 0.07}, + {'clip_gradient': 0.4, 'rescale_grad': 0.14, 'wd': 0.03}, + {'rescale_grad': 0.8, 'wd': 0.05}, + {'clip_gradient': 0.5, 'momentum': 0.9}, + {'clip_gradient': 0.4, 'rescale_grad': 0.14, 'momentum': 0.9}, + {'rescale_grad': 0.8, 'momentum': 0.9}, + {'clip_gradient': 0.5, 'wd': 0.07, 'momentum': 0.9}, + {'clip_gradient': 0.4, 'rescale_grad': 0.14, 'wd': 0.03, 'momentum': 0.9}, + {'rescale_grad': 0.8, 'wd': 0.05, 'momentum': 0.9}] + for kwarg in kwargs: + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, w_stype='default_storage', g_stype='row_sparse') + # ADAM class PyAdam(mx.optimizer.Optimizer): @@ -354,3 +456,4 @@ def test_rms(): test_adam() test_rms() test_sgd() + test_sparse_sgd() diff --git a/tests/python/unittest/test_sparse_ndarray.py b/tests/python/unittest/test_sparse_ndarray.py new file mode 100644 index 000000000000..224a5e008b3b --- /dev/null +++ b/tests/python/unittest/test_sparse_ndarray.py @@ -0,0 +1,273 @@ +import os +import mxnet as mx +import numpy as np +import pickle as pkl +from mxnet.test_utils import * +from numpy.testing import assert_allclose +import numpy.random as rnd + +def assert_fcompex(f, *args, **kwargs): + prev_val = mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", "0", "1") + f(*args, **kwargs) + mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", prev_val) + +def rand_shape_2d(): + return (rnd.randint(1, 10), rnd.randint(1, 10)) + +def sparse_nd_ones(shape, stype): + return mx.nd.cast_storage(mx.nd.ones(shape), storage_type=stype) + +def check_sparse_nd_elemwise_binary(shapes, storage_types, f, g): + # generate inputs + nds = [] + for i, storage_type in enumerate(storage_types): + if storage_type == 'row_sparse': + nd, _ = rand_sparse_ndarray(shapes[i], storage_type) + elif storage_type == 'default_storage': + nd = mx.nd.array(random_arrays(shapes[i]), dtype = np.float32) + else: + assert(False) + nds.append(nd) + # check result + test = f(nds[0], nds[1]) + assert_almost_equal(test.asnumpy(), g(nds[0].asnumpy(), nds[1].asnumpy())) + +def test_sparse_nd_elemwise_add(): + num_repeats = 10 + g = lambda x,y: x + y + op = mx.nd.elemwise_add + for i in range(num_repeats): + shape = [rand_shape_2d()] * 2 + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['default_storage'] * 2, op, g) + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['default_storage', 'row_sparse'], op, g) + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['row_sparse', 'row_sparse'], op, g) + +# Test a operator which doesn't implement FComputeEx +def test_sparse_nd_elementwise_fallback(): + num_repeats = 10 + g = lambda x,y: x + y + op = mx.nd.add_n + for i in range(num_repeats): + shape = [rand_shape_2d()] * 2 + check_sparse_nd_elemwise_binary(shape, ['default_storage'] * 2, op, g) + check_sparse_nd_elemwise_binary(shape, ['default_storage', 'row_sparse'], op, g) + check_sparse_nd_elemwise_binary(shape, ['row_sparse', 'row_sparse'], op, g) + +def test_sparse_nd_zeros(): + def check_sparse_nd_zeros(stype, shape): + zero = mx.nd.zeros(shape) + sparse_zero = mx.sparse_nd.zeros('row_sparse', shape) + assert_almost_equal(sparse_zero.asnumpy(), zero.asnumpy()) + + shape = rand_shape_2d() + check_sparse_nd_zeros('row_sparse', shape) + check_sparse_nd_zeros('csr', shape) + + +def test_sparse_nd_copy(): + def check_sparse_nd_copy(from_stype, to_stype): + shape = rand_shape_2d() + from_nd = rand_ndarray(shape, from_stype) + # copy to ctx + to_ctx = from_nd.copyto(default_context()) + # copy to stype + to_nd = rand_ndarray(shape, to_stype) + to_nd = from_nd.copyto(to_nd) + assert np.sum(np.abs(from_nd.asnumpy() != to_ctx.asnumpy())) == 0.0 + assert np.sum(np.abs(from_nd.asnumpy() != to_nd.asnumpy())) == 0.0 + + check_sparse_nd_copy('row_sparse', 'row_sparse') + check_sparse_nd_copy('row_sparse', 'default_storage') + check_sparse_nd_copy('default_storage', 'row_sparse') + check_sparse_nd_copy('default_storage', 'csr') + +def check_sparse_nd_prop_rsp(): + storage_type = 'row_sparse' + shape = rand_shape_2d() + nd, (v, idx) = rand_sparse_ndarray(shape, storage_type) + assert(nd._num_aux == 1) + assert(nd._indices.dtype == np.int32) + assert(nd.storage_type == 'row_sparse') + assert_almost_equal(nd._indices.asnumpy(), idx) + +def test_sparse_nd_basic(): + def check_rsp_creation(values, indices, shape): + rsp = mx.sparse_nd.row_sparse(values, indices, shape) + dns = mx.nd.zeros(shape) + dns[1] = mx.nd.array(values[0]) + dns[3] = mx.nd.array(values[1]) + assert_almost_equal(rsp.asnumpy(), dns.asnumpy()) + indices = mx.nd.array(indices).asnumpy() + assert_almost_equal(rsp._indices.asnumpy(), indices) + + def check_csr_creation(shape): + csr, (indptr, indices, values) = rand_sparse_ndarray(shape, 'csr') + assert_almost_equal(csr._indptr.asnumpy(), indptr) + assert_almost_equal(csr._indices.asnumpy(), indices) + assert_almost_equal(csr._values.asnumpy(), values) + + shape = (4,2) + values = np.random.rand(2,2) + indices = np.array([1,3]) + check_rsp_creation(values, indices, shape) + + values = mx.nd.array(np.random.rand(2,2)) + indices = mx.nd.array([1,3], dtype='int32') + check_rsp_creation(values, indices, shape) + + values = [[0.1, 0.2], [0.3, 0.4]] + indices = [1,3] + check_rsp_creation(values, indices, shape) + + check_csr_creation(shape) + check_sparse_nd_prop_rsp() + +def test_sparse_nd_setitem(): + def check_sparse_nd_setitem(storage_type, shape, dst): + x = mx.sparse_nd.zeros(storage_type, shape) + x[:] = dst + dst_nd = mx.nd.array(dst) if isinstance(dst, (np.ndarray, np.generic)) else dst + assert same(x.asnumpy(), dst_nd.asnumpy()) + + shape = rand_shape_2d() + for stype in ['row_sparse', 'csr']: + # ndarray assignment + check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, 'default_storage')) + check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, stype)) + # numpy assignment + check_sparse_nd_setitem(stype, shape, np.ones(shape)) + +def test_sparse_nd_slice(): + def check_sparse_nd_csr_slice(shape): + storage_type = 'csr' + A, _ = rand_sparse_ndarray(shape, storage_type) + A2 = A.asnumpy() + start = rnd.randint(0, shape[0] - 1) + end = rnd.randint(start + 1, shape[0]) + assert same(A[start:end].asnumpy(), A2[start:end]) + + shape = (rnd.randint(2, 10), rnd.randint(1, 10)) + check_sparse_nd_csr_slice(shape) + +def test_sparse_nd_equal(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = x == y + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 == x + assert (z.asnumpy() == np.ones(shape)).all() + +def test_sparse_nd_not_equal(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = x != y + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 != x + assert (z.asnumpy() == np.zeros(shape)).all() + +def test_sparse_nd_greater(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = x > y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y > 0 + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 > y + assert (z.asnumpy() == np.zeros(shape)).all() + +def test_sparse_nd_greater_equal(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = x >= y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y >= 0 + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 >= y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y >= 1 + assert (z.asnumpy() == np.ones(shape)).all() + +def test_sparse_nd_lesser(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = y < x + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 < y + assert (z.asnumpy() == np.ones(shape)).all() + z = y < 0 + assert (z.asnumpy() == np.zeros(shape)).all() + +def test_sparse_nd_lesser_equal(): + stype = 'csr' + shape = rand_shape_2d() + x = mx.sparse_nd.zeros(stype, shape) + y = sparse_nd_ones(shape, stype) + z = y <= x + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 <= y + assert (z.asnumpy() == np.ones(shape)).all() + z = y <= 0 + assert (z.asnumpy() == np.zeros(shape)).all() + z = 1 <= y + assert (z.asnumpy() == np.ones(shape)).all() + +def test_sparse_nd_binary(): + N = 100 + def check_binary(fn): + for _ in range(N): + ndim = 2 + oshape = np.random.randint(1, 6, size=(ndim,)) + bdim = 2 + lshape = list(oshape) + rshape = list(oshape[ndim-bdim:]) + for i in range(bdim): + sep = np.random.uniform(0, 1) + if sep < 0.33: + lshape[ndim-i-1] = 1 + elif sep < 0.66: + rshape[bdim-i-1] = 1 + lhs = np.random.normal(0, 1, size=lshape) + rhs = np.random.normal(0, 1, size=rshape) + lhs_nd = mx.nd.array(lhs).to_csr() + rhs_nd = mx.nd.array(rhs).to_csr() + assert_allclose(fn(lhs, rhs), + fn(lhs_nd, rhs_nd).asnumpy(), + rtol=1e-4, atol=1e-4) + + #check_binary(lambda x, y: x + y) + check_binary(lambda x, y: x - y) + check_binary(lambda x, y: x * y) + check_binary(lambda x, y: x / y) + check_binary(lambda x, y: x > y) + check_binary(lambda x, y: x < y) + check_binary(lambda x, y: x >= y) + check_binary(lambda x, y: x <= y) + check_binary(lambda x, y: x == y) + +def test_sparse_nd_negate(): + npy = np.random.uniform(-10, 10, rand_shape_2d()) + arr = mx.nd.array(npy).to_csr() + assert_almost_equal(npy, arr.asnumpy()) + assert_almost_equal(-npy, (-arr).asnumpy()) + + # a final check to make sure the negation (-) is not implemented + # as inplace operation, so the contents of arr does not change after + # we compute (-arr) + assert_almost_equal(npy, arr.asnumpy()) + +if __name__ == '__main__': + import nose + nose.runmodule() diff --git a/tests/python/unittest/test_sparse_operator.py b/tests/python/unittest/test_sparse_operator.py new file mode 100644 index 000000000000..978737028c98 --- /dev/null +++ b/tests/python/unittest/test_sparse_operator.py @@ -0,0 +1,198 @@ +# pylint: skip-file +import numpy as np +import mxnet as mx +import scipy as sp +from numpy.testing import assert_allclose +from mxnet.test_utils import * + +def check_elemwise_add_ex(lhs_stype, rhs_stype, shape, lhs_grad_stype=None, rhs_grad_stype=None): + lhs = mx.symbol.Variable('lhs', storage_type=lhs_stype) + rhs = mx.symbol.Variable('rhs', storage_type=rhs_stype) + if lhs_grad_stype is not None: + lhs._set_attr(grad_stype_hint=str(lhs_grad_stype)) + if rhs_grad_stype is not None: + rhs._set_attr(grad_stype_hint=str(rhs_grad_stype)) + + lhs_nd = rand_ndarray(shape, lhs_stype) + rhs_nd = rand_ndarray(shape, rhs_stype) + lhs_np = lhs_nd.asnumpy() + rhs_np = rhs_nd.asnumpy() + + out_np = lhs_np + rhs_np + test = mx.symbol.elemwise_add(lhs, rhs) + location = {'lhs': lhs_nd, 'rhs': rhs_nd} + check_symbolic_forward(test, location, [out_np]) + check_numeric_gradient(test, location) + check_symbolic_backward(test, location, [out_np], [out_np, out_np]) + + +def test_elemwise_add_ex(): + shape = (rnd.randint(1, 10), rnd.randint(1, 10)) + check_elemwise_add_ex('default_storage', 'default_storage', shape) + # TODO(haibin/jun) enable these tests when Dns -> Rsp (compact) is implemented. + #check_elemwise_add_ex('default_storage', 'row_sparse', shape) + #check_elemwise_add_ex('row_sparse', 'default_storage', shape) + #check_elemwise_add_ex('row_sparse', 'row_sparse', shape, + # lhs_grad_stype='row_sparse', rhs_grad_stype='row_sparse') + + +# TODO(haibin) randomize this test +def test_elemwise_add_ex_multiple_stages(): + # prep data + shape = (4, 2) + ds_np = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) + sp_np1 = np.array([[5, 10], [0, 0], [0, 0], [0, 0]]) + sp_np2 = np.array([[0, 0], [5, 10], [0, 0], [0, 0]]) + + val1 = mx.nd.array([[5, 10]]); + val2 = mx.nd.array([[5, 10]]); + idx1 = mx.nd.array([0], dtype=np.int32); + idx2 = mx.nd.array([1], dtype=np.int32); + sp_nd1 = mx.sparse_nd.row_sparse(val1, idx1, shape) + sp_nd2 = mx.sparse_nd.row_sparse(val2, idx2, shape) + ds_nd = mx.nd.array(ds_np) + + # sparse + sparse = sparse + sp_data1 = mx.symbol.Variable('sp_data1', storage_type='row_sparse') + sp_data2 = mx.symbol.Variable('sp_data2', storage_type='row_sparse') + ds_data = mx.symbol.Variable('ds_data') + plus = mx.symbol.elemwise_add(sp_data1, sp_data2, name='plus') + # sparse + dense = dense + test = mx.symbol.elemwise_add(plus, ds_data) + check_symbolic_forward(test, {'sp_data1': sp_nd1, 'sp_data2': sp_nd2, + 'ds_data': ds_nd}, [sp_np1 + sp_np2 + ds_np]) + + arr_grads = [mx.nd.zeros(shape) for i in range(3)] + exec_test = test.bind(default_context(), args={'sp_data1': sp_nd1, 'sp_data2': sp_nd2, + 'ds_data': ds_nd}, args_grad=arr_grads) + exec_test.forward(is_train=True) + assert_almost_equal(exec_test.outputs[0].asnumpy(), sp_np1 + sp_np2 + ds_np) + exec_test.backward(out_grads=exec_test.outputs) + assert_almost_equal(arr_grads[0].asnumpy(), arr_grads[1].asnumpy()) + +# TODO(haibin) also add test for backward pass +def test_cast_storage_ex(): + def test_rsp_to_dns(shape): + rsp, (data, row_idx) = rand_sparse_ndarray(shape, 'row_sparse') + dns_out = mx.nd.cast_storage(rsp, storage_type='default_storage') + dns_expected = np.zeros(shape, dtype=default_dtype()) + if row_idx is not None: + for k, v in enumerate(row_idx): + dns_expected[v, :] = data[k] + assert same(dns_out.asnumpy(), dns_expected) + + def test_dns_to_rsp(shape): + dns_in = rand_ndarray(shape, 'default_storage') + rsp_out = mx.nd.cast_storage(mx.nd.array(dns_in, dtype=default_dtype()), storage_type='row_sparse') + ret = mx.nd.cast_storage(rsp_out, storage_type='default_storage') + assert same(ret.asnumpy(), dns_in.asnumpy()) + + def test_csr_to_dns(shape): + csr, (indptr, indices, values) = rand_sparse_ndarray(shape, 'csr') + mx_dns = csr.to_dense() + np_dns = sp.sparse.csr_matrix((values, indices, indptr), shape).todense() + assert_almost_equal(mx_dns.asnumpy(), np_dns) + + def test_dns_to_csr(dns_in): + dns_in = np.array(dns_in) + csr_out = mx.nd.cast_storage(mx.nd.array(dns_in, dtype=default_dtype()), storage_type='csr') + ret = mx.nd.cast_storage(csr_out, storage_type='default_storage') + assert same(ret.asnumpy(), dns_in) + + shape = (rnd.randint(1, 10), rnd.randint(1, 10)) + test_rsp_to_dns(shape) + test_dns_to_rsp(shape) + test_csr_to_dns((4, 4)) + test_dns_to_csr([[0, 1, 0], [0, 2, 0], [3, 0, 0], [0, 0, 4], [5, 6, 0], [0, 0, 7]]) + + +# TODO(junwu): The backward of the operator dot cannot be tested for now +# since the backend function CopyFromTo does not support taking two arguments +# of the different storage types. Will add backward test after removing this +# restriction on CopyFromTo(@haibin). Nevertheless, both backward and forward use +# the same impl function of dot(csr, dns) = rsp and it has been tested +# in the forward test cases as the following. +def test_sparse_dot(): + def test_dot_csr_dns(csr_shape, dns_shape, trans_csr): + dns1 = rand_ndarray(csr_shape, 'default_storage') + dns2 = rand_ndarray(dns_shape, 'default_storage') + csr = mx.nd.cast_storage(dns1, storage_type='csr') + out = mx.nd.dot(csr, dns2, transpose_a=trans_csr) + assert out.storage_type == 'default_storage' + out_expected = mx.nd.dot(dns1, dns2, transpose_a=trans_csr) + out_np = out_expected.asnumpy() + backward_trans = not trans_csr + rhs_backward_grad = mx.nd.dot(dns1, out_expected, transpose_a=backward_trans).asnumpy() + assert_almost_equal(out.asnumpy(), out_np, rtol=1e-4, atol=1e-5) + + # test symbolic forward + lhs = mx.symbol.Variable('lhs', storage_type='csr') + rhs = mx.symbol.Variable('rhs', storage_type='default_storage') + # TODO(haibin) since backward op is not fully implemented, here we add a dense zero ndarray + # so that the output gradient is dense. + zeros = mx.symbol.Variable('zero', storage_type='default_storage') + + sym_dot = mx.symbol.dot(lhs, rhs, transpose_a=trans_csr) + test = mx.symbol.elemwise_add(sym_dot, zeros) + location = {'lhs': csr, 'rhs': dns2, 'zero': mx.nd.zeros(out_expected.shape)} + expected = {'rhs': rhs_backward_grad, 'zero': out_np} + # dot(lhs, rhs) + zeros + check_symbolic_forward(test, location, [out_expected.asnumpy()], rtol=1e-3, atol=1e-4) + check_symbolic_backward(test, location, [out_np], expected, + grad_req={'lhs': 'null', 'rhs': 'write', 'zero': 'write'}, + rtol=1e-3, atol=1e-4) + + lhs_shape = (rnd.randint(1, 10), rnd.randint(1, 10)) + test_dot_csr_dns(lhs_shape, (lhs_shape[1], rnd.randint(1, 10)), False) + test_dot_csr_dns(lhs_shape, (lhs_shape[0], rnd.randint(1, 10)), True) + + +def test_sparse_embedding(): + in_dim = 10 + out_dim = 4 + batch = 24 + + data = mx.sym.Variable("data", dtype=np.int32) + embed = mx.sym.SparseEmbedding(data=data, input_dim=in_dim, output_dim=out_dim, name="embed") + exe_test = embed.simple_bind(default_context(), grad_req={'data': 'null', 'embed_weight': 'write'}, + data=(batch,)) + arg_map = dict(zip(embed.list_arguments(), exe_test.arg_arrays)) + grad_map = dict(zip(embed.list_arguments(), exe_test.grad_arrays)) + np_data = np.random.randint(low=0, high=in_dim, size=batch) + np_weight = np.random.uniform(-0.01, 0.01, arg_map["embed_weight"].shape) + np_onehot = np.zeros((batch, in_dim)) + np_onehot[np.arange(batch), np_data] = 1.0 + # forward + arg_map["data"][:] = np_data + arg_map["embed_weight"][:] = np_weight + exe_test.forward(is_train=True) + assert_almost_equal(exe_test.outputs[0].asnumpy(), np.dot(np_onehot, np_weight)) + # backward + np_grad = np.random.uniform(-1, 1, exe_test.outputs[0].shape) + grad = mx.nd.zeros(np_grad.shape) + grad[:] = np_grad + exe_test.backward([grad]) + assert_almost_equal(grad_map["embed_weight"].asnumpy(), np.dot(np_onehot.T, np_grad), atol=1e-5) + +def test_sparse_slice(): + def check_csr_slice(shape, slice_input): + storage_type = 'csr' + A, _ = rand_sparse_ndarray(shape, storage_type) + B = A._slice(1, shape[0] - 1) if slice_input else A + np = B.asnumpy() + begin = rnd.randint(0, B.shape[0] - 1) + end = rnd.randint(begin + 1, B.shape[0]) + nd_slice = mx.nd.crop(B, begin=begin, end=end) + assert same(nd_slice.asnumpy(), np[begin:end]), (nd_slice.asnumpy(), np[begin:end]) + + shape = (rnd.randint(7, 15), rnd.randint(1, 10)) + check_csr_slice(shape, True) + check_csr_slice(shape, False) + +if __name__ == '__main__': + test_elemwise_add_ex() + test_elemwise_add_ex_multiple_stages() + test_cast_storage_ex() + test_sparse_dot() + test_sparse_embedding() + test_sparse_slice()