-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathValFldPad.mag
608 lines (504 loc) · 18.4 KB
/
ValFldPad.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// This file is part of ExactpAdics
// Copyright (C) 2018 Christopher Doris
//
// ExactpAdics is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ExactpAdics is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with ExactpAdics. If not, see <http://www.gnu.org/licenses/>.
///# Valuations
///
///toc
///
///## Introduction
///
/// In this package, we define new types to represent valuations of p-adic numbers and polynomials. These are also used to represent precisions.
///
/// The valuation of a p-adic number is represented by the type `ValFldPadExactElt`, whose value is either an integer, or positive or negative infinity. Mathematically its values are in $Z := \ZZ \cup \{\pm\infty\}$. Addition of valuations corresponds to multiplications of p-adics, so we define this. On the other hand, multiplication of two valuations has no natural interpretation, so we do not define this. Taking the minimum of two valuations is defined, since this bounds the valuation of the sum of the corresponding p-adics. Hence $Z$ is more like the *tropical ring of integers* than the usual ring of integers $\ZZ$. Multiplying by an ordinary integer (*scalar multiplication*) is defined because this corresponds to exponentiation of p-adic numbers. They are also totally ordered. For convenience, we extend $Z$ to include the rationals $\QQ$ too.
///
/// The valuation of a polynomial is (by definition in the package) a function taking an exponent vector to the valuation of the corresponding coefficient. That is, for polynomials of rank $n$, it is a function $\NN^n \to Z^n$, i.e. an element of $Z^{\NN^n}$. They are represented by the type `Val_RngUPolElt_FldPad` for univariate polynomials and `Val_RngMPolElt_FldPad` for multivariate polynomials over p-adic fields. Since polynomials by definition have only finitely many non-zero coefficients, the function is constant except for finitely many inputs. We can define a partial ordering on these valuations: $v_1 < v_2$ iff for all $n \in \NN$ then $v_1(n) < v_2(n)$. This partial ordering gives us suprema and infema (defined pointwise), and we can also define addition and scalar multiplication pointwise.
///## Generic intrinsics
///
/// In this section we document intrinsics common to all valuations. Where there are multiple `Val` inputs, it suffices for only one to be a `Val` and for them all to be coercible to a common `Val` type.
/// Negation, addition and subtraction.
///
/// This is as normal for `ValFldPadExactElt`, and defined pointwise otherwise. For convenience, we define $\infty-\infty=0$.
///~intrinsic '-'(v :: Val) -> Val {"} end intrinsic;
///~intrinsic '+'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic '-'(v :: Val, w :: Val) -> Val {"} end intrinsic;
/// Scalar multiplication and division. `n` must be an integer or rational.
///~intrinsic '*'(v :: Val, n) -> Val {"} end intrinsic;
///~intrinsic '*'(n, v :: Val) -> Val {"} end intrinsic;
///~intrinsic '/'(v :: Val, n) -> Val {"} end intrinsic;
/// Ordering predicates.
///
/// This is as normal for `ValFldPadExactElt` (i.e. a total ordering), and defined pointwise otherwise (i.e. a partial ordering).
///~intrinsic 'eq'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'ne'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'le'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'lt'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'ge'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'gt'(v :: Val, w :: Val) -> Val {"} end intrinsic;
/// Supremum and infemum.
///
/// This is just maximum and minimum for `ValFldPadExactElt`, and defined pointwise otherwise.
///~intrinsic 'join'(v :: Val, w :: Val) -> Val {"} end intrinsic;
///~intrinsic 'meet'(v :: Val, w :: Val) -> Val {"} end intrinsic;
/// Diff. For `ValFldPadExactElt`, `v diff w` is defined to be `v` if `v gt w` and otherwise is negative infinity. Otherwise, it is defined pointwise.
///
/// If you view the valuation of a compound structure like a multiset, except where the multiplicities on each element are tropical integers instead of normal integers, then `diff` is like set difference defined via a universal property.
///~intrinsic 'diff'(v :: Val, w :: Val) -> Val {"} end intrinsic;
/// Retrieves the value of the valuation. For `ValFldPadExactElt` this is an integer, rational or infinite. For compound structures it is the underlying function, e.g. for polynomials it is an `AssocDflt` representing a function which is constant almost everywhere.
///~intrinsic Value(v :: Val) -> . {"} end intrinsic;
/// True if `v` may be coerced to a valuation for `x`. If so, also returns the coerced valuation.
///~intrinsic IsValidAbsolutePrecision(x, v) -> Val {"} end intrinsic;
/// True if `v` may be coerced to a valuation for `x`. If so also returns the coerced valuation. Differs from `IsValidAbsolutePrecision` in that, for example, for polynomials, if the constant value is not implied by `v`, then it is taken to be -infinity instead of infinity.
///~intrinsic IsValidAbsolutePrecisionDiff(x, v) -> Val {"} end intrinsic;
///## ValFldPadExactElt
/// Represents the valuation of a p-adic number.
import "Utils.mag": WVAL, APR, Z, OO;
import "Promotion.mag": do_binop;
// the valuation of a FldPadElt or FldPadExactElt or similar
declare type ValFldPadExactElt: ValPadExact;
declare attributes ValFldPadExactElt
: value // REQ: FldRatElt, RngIntElt or Infty
;
VAL_FLDPADEXACTELT_INFINITY := New(ValFldPadExactElt);
VAL_FLDPADEXACTELT_INFINITY`value := OO;
VAL_FLDPADEXACTELT_NEGINFINITY := New(ValFldPadExactElt);
VAL_FLDPADEXACTELT_NEGINFINITY`value := -OO;
VAL_FLDPADEXACTELT_ZERO := New(ValFldPadExactElt);
VAL_FLDPADEXACTELT_ZERO`value := 0;
///### Creation
intrinsic ValFldPadExactElt_IsCoercible(v) -> BoolElt, .
{True if v is coercible to a ValFldPadExactElt, and the coerced value.}
return false, "wrong type";
end intrinsic;
intrinsic ValFldPadExactElt_IsCoercible(v :: ValFldPadExactElt) -> BoolElt, .
{"}
return true, v;
end intrinsic;
intrinsic ValFldPadExactElt_IsCoercible(v :: RngIntElt) -> BoolElt, .
{"}
r := New(ValFldPadExactElt);
r`value := v;
return true, r;
end intrinsic;
intrinsic ValFldPadExactElt_IsCoercible(v :: Infty) -> BoolElt, .
{"}
r := New(ValFldPadExactElt);
r`value := v;
return true, r;
end intrinsic;
intrinsic ValFldPadExactElt_IsCoercible(v :: ExtReElt) -> BoolElt, .
{"}
return ValFldPadExactElt_IsCoercible(Retrieve(v));
end intrinsic;
intrinsic ValFldPadExactElt_IsCoercible(v :: FldRatElt) -> BoolElt, .
{"}
r := New(ValFldPadExactElt);
r`value := v;
return true, r;
end intrinsic;
intrinsic IsPromotable(v :: ValFldPadExactElt, w) -> BoolElt, ., .
{True if v and w are promotable to a common type.}
ok, w2 := ValFldPadExactElt_IsCoercible(w);
if ok then
return true, v, w2;
end if;
return false, _, _;
end intrinsic;
///hide
intrinsic IsValidAbsolutePrecision(x :: FldPadExactElt, v) -> BoolElt, .
{True if v is coercible to an absolute precision for x. Also returns the coerced value.}
return ValFldPadExactElt_IsCoercible(v);
end intrinsic;
///hide
intrinsic IsValidAbsolutePrecisionDiff(x :: FldPadExactElt, v) -> BoolElt, .
{True if v is coercible to an absolute precision diff for x. Also returns the coerced value.}
return ValFldPadExactElt_IsCoercible(v);
end intrinsic;
intrinsic ValFldPadExactElt_Make(v) -> ValFldPadExactElt
{A ValFldPadExactElt with value v.}
ok, v := ValFldPadExactElt_IsCoercible(v);
require ok: v;
return v;
end intrinsic;
///### Special values
intrinsic ValFldPadExactElt_Infinity() -> ValFldPadExactElt
{The valuation Infinity.}
return VAL_FLDPADEXACTELT_INFINITY;
end intrinsic;
intrinsic ValFldPadExactElt_NegInfinity() -> ValFldPadExactElt
{The valuation -Infinity.}
return VAL_FLDPADEXACTELT_NEGINFINITY;
end intrinsic;
intrinsic ValFldPadExactElt_Zero() -> ValFldPadExactElt
{The valuation 0.}
return VAL_FLDPADEXACTELT_ZERO;
end intrinsic;
///hide
intrinsic Print(v :: ValFldPadExactElt, lvl :: MonStgElt)
{Print.}
case lvl:
when "Magma":
printf "ValFldPadExactElt_Make(%m)", Value(v);
else
printf "%O", Value(v), lvl;
end case;
end intrinsic;
///hide
intrinsic Value(v :: ValFldPadExactElt) -> .
{The value of v.}
return v`value;
end intrinsic;
///### Other operations
intrinsic IsFinite(v :: ValFldPadExactElt) -> BoolElt
{True if v is finite, i.e. an integer or rational.}
return Type(v`value) ne Infty;
end intrinsic;
intrinsic IsIntegral(v :: ValFldPadExactElt) -> BoolElt, RngIntElt
{True if v has an integer value, and the value if so.}
return IsCoercible(Z, v`value);
end intrinsic;
intrinsic IntegerValue(v :: ValFldPadExactElt) -> RngIntElt
{The value of v coerced to an integer.}
ok, n := IsIntegral(v);
require ok: "must be an integer";
return n;
end intrinsic;
intrinsic Ceiling(v :: ValFldPadExactElt) -> ValFldPadExactElt
{The integer valuation larger than v, or just v if infinite.}
return ValFldPadExactElt_Make(Ceiling(Value(v)));
end intrinsic;
///hide
intrinsic '-'(v :: ValFldPadExactElt) -> ValFldPadExactElt
{Negation.}
return ValFldPadExactElt_Make(-Value(v));
end intrinsic;
///hide
intrinsic '&+'(vs :: [ValFldPadExactElt]) -> ValFldPadExactElt
{Summation.}
w := &+[v`value : v in vs];
return ValFldPadExactElt_Make(Type(w) eq ExtReElt select Retrieve(w) else w);
end intrinsic;
///hide
intrinsic '+'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Addition.}
return &+[v,w];
end intrinsic;
///hide
intrinsic '+'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///hide
intrinsic '+'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///hide
intrinsic '+'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///hide
intrinsic '+'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///hide
intrinsic '-'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Subtraction. Note that subtraction is interpreted as a "precision = absolute precision - valuation" calculation, so Infinity-Infinity is 0.}
return ValFldPadExactElt_Make(Value(v) eq Value(w) select 0 else Value(v) - Value(w));
end intrinsic;
///hide
intrinsic '-'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///hide
intrinsic '-'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///hide
intrinsic '-'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///hide
intrinsic '-'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///hide
intrinsic '*'(v :: ValFldPadExactElt, w :: RngIntElt) -> ValFldPadExactElt
{Multiplication.}
return ValFldPadExactElt_Make(Value(v) * w);
end intrinsic;
///hide
intrinsic '*'(v :: ValFldPadExactElt, w :: FldRatElt) -> ValFldPadExactElt
{"}
return ValFldPadExactElt_Make(Value(v) * w);
end intrinsic;
///hide
intrinsic '*'(v :: RngIntElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{"}
return ValFldPadExactElt_Make(v * Value(w));
end intrinsic;
///hide
intrinsic '*'(v :: FldRatElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{"}
return ValFldPadExactElt_Make(v * Value(w));
end intrinsic;
///hide
intrinsic '/'(v :: ValFldPadExactElt, w :: RngIntElt) -> ValFldPadExactElt
{Division.}
return ValFldPadExactElt_Make(Value(v) / w);
end intrinsic;
///hide
intrinsic '/'(v :: ValFldPadExactElt, w :: FldRatElt) -> ValFldPadExactElt
{"}
return ValFldPadExactElt_Make(Value(v) / w);
end intrinsic;
///hide
intrinsic 'join'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{The higher of v and w. Interpreted as an upper bound on two absolute precisions.}
return v ge w select v else w;
end intrinsic;
///hide
intrinsic 'join'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('join', v, w);
end intrinsic;
///hide
intrinsic 'join'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('join', v, w);
end intrinsic;
///hide
intrinsic 'join'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('join', v, w);
end intrinsic;
///hide
intrinsic 'join'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('join', v, w);
end intrinsic;
///hide
intrinsic 'meet'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{The lower of v and w. Interpreted as a lower bound on two valuations.}
return v le w select v else w;
end intrinsic;
///hide
intrinsic 'meet'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('meet', v, w);
end intrinsic;
///hide
intrinsic 'meet'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('meet', v, w);
end intrinsic;
///hide
intrinsic 'meet'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('meet', v, w);
end intrinsic;
///hide
intrinsic 'meet'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('meet', v, w);
end intrinsic;
///hide
intrinsic 'diff'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{v if v is higher than w else -OO. Interpreted as the absolute precision required if v is wanted and w is already got.}
return v gt w select v else VAL_FLDPADEXACTELT_NEGINFINITY;
end intrinsic;
///hide
intrinsic 'diff'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('diff', v, w);
end intrinsic;
///hide
intrinsic 'diff'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('diff', v, w);
end intrinsic;
///hide
intrinsic 'diff'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('diff', v, w);
end intrinsic;
///hide
intrinsic 'diff'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('diff', v, w);
end intrinsic;
///hide
intrinsic 'eq'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Equality.}
return Value(v) eq Value(w);
end intrinsic;
///hide
intrinsic 'eq'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('eq', v, w);
end intrinsic;
///hide
intrinsic 'eq'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('eq', v, w);
end intrinsic;
///hide
intrinsic 'eq'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('eq', v, w);
end intrinsic;
///hide
intrinsic 'eq'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('eq', v, w);
end intrinsic;
///hide
intrinsic 'ne'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Inequality.}
return Value(v) ne Value(w);
end intrinsic;
///hide
intrinsic 'ne'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('ne', v, w);
end intrinsic;
///hide
intrinsic 'ne'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('ne', v, w);
end intrinsic;
///hide
intrinsic 'ne'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('ne', v, w);
end intrinsic;
///hide
intrinsic 'ne'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('ne', v, w);
end intrinsic;
///hide
intrinsic 'le'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Equality.}
return Value(v) le Value(w);
end intrinsic;
///hide
intrinsic 'le'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('le', v, w);
end intrinsic;
///hide
intrinsic 'le'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('le', v, w);
end intrinsic;
///hide
intrinsic 'le'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('le', v, w);
end intrinsic;
///hide
intrinsic 'le'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('le', v, w);
end intrinsic;
///hide
intrinsic 'lt'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Equality.}
return Value(v) lt Value(w);
end intrinsic;
///hide
intrinsic 'lt'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('lt', v, w);
end intrinsic;
///hide
intrinsic 'lt'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('lt', v, w);
end intrinsic;
///hide
intrinsic 'lt'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('lt', v, w);
end intrinsic;
///hide
intrinsic 'lt'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('lt', v, w);
end intrinsic;
///hide
intrinsic 'ge'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Equality.}
return Value(v) ge Value(w);
end intrinsic;
///hide
intrinsic 'ge'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('ge', v, w);
end intrinsic;
///hide
intrinsic 'ge'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('ge', v, w);
end intrinsic;
///hide
intrinsic 'ge'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('ge', v, w);
end intrinsic;
///hide
intrinsic 'ge'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('ge', v, w);
end intrinsic;
///hide
intrinsic 'gt'(v :: ValFldPadExactElt, w :: ValFldPadExactElt) -> ValFldPadExactElt
{Equality.}
return Value(v) gt Value(w);
end intrinsic;
///hide
intrinsic 'gt'(v, w :: ValFldPadExactElt) -> .
{"}
return do_binop('gt', v, w);
end intrinsic;
///hide
intrinsic 'gt'(v:: ValFldPadExactElt, w) -> .
{"}
return do_binop('gt', v, w);
end intrinsic;
///hide
intrinsic 'gt'(v :: Infty, w :: ValFldPadExactElt) -> .
{"}
return do_binop('gt', v, w);
end intrinsic;
///hide
intrinsic 'gt'(v:: ValFldPadExactElt, w :: Infty) -> .
{"}
return do_binop('gt', v, w);
end intrinsic;
intrinsic ExactpAdics_Val(x :: FldPadElt) -> ValFldPadExactElt
{The valuation of x.}
return ValFldPadExactElt_Make(WVAL(x));
end intrinsic;
intrinsic ExactpAdics_APr(x :: FldPadElt) -> ValFldPadExactElt
{The absolute precision of x.}
return ValFldPadExactElt_Make(APR(x));
end intrinsic;