-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModTupFld.mag
554 lines (487 loc) · 15.9 KB
/
ModTupFld.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
// This file is part of ExactpAdics
// Copyright (C) 2018 Christopher Doris
//
// ExactpAdics is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ExactpAdics is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with ExactpAdics. If not, see <http://www.gnu.org/licenses/>.
///# Linear algebra
///toc
import "Utils.mag": Q, Z, CAP_PR;
import "Promotion.mag": do_binop;
declare type ModTupFld_FldPadExact[ModTupFldElt_FldPadExact]: StrPadExact;
declare attributes ModTupFld_FldPadExact
: base_field // the base field
, degree // the degree (i.e. a subspace of base_field^degree)
, generic // the generic space of which this is a subspace (can be itself)
, outer_generators // sequence of generators (in some overspace) (if not assigned, must be generic)
// CACHE
, generators // sequence of generators (in this space)
, dimension // Dimension(*)
, zero // Zero(*)
;
declare type ModTupFldElt_FldPadExact: PadExactElt;
declare attributes ModTupFldElt_FldPadExact
// CACHE
: negation // -*
, component // [i] -> Component(*,i) = *(i)
, eltseq // Eltseq(*)
, norm // Norm(*)
;
declare attributes FldPadExact
// CACHE
: vector_space // [n] -> VectorSpace(*, n)
;
///## Creation of vector spaces
///priority 2
intrinsic VectorSpace(K :: FldPadExact, n :: RngIntElt) -> ModTupFld_FldPadExact
{The full vector space over K of dimension n.}
return KSpace(K, n);
end intrinsic;
intrinsic KSpace(K :: FldPadExact, n :: RngIntElt) -> ModTupFld_FldPadExact
{"}
require n ge 0: "n must be at least 0";
if not assigned K`vector_space then
K`vector_space := AssociativeArray(Z);
end if;
ok, V := IsDefined(K`vector_space, n);
if not ok then
V := New(ModTupFld_FldPadExact);
V`base_field := K;
V`degree := n;
V`generic := V;
V`dependencies := [* K *];
V`get_approximation := func<m, xds | VectorSpace(xds[1], n)>;
Init(V);
K`vector_space[n] := V;
end if;
return V;
end intrinsic;
///hide
intrinsic Print(V :: ModTupFld_FldPadExact, lvl :: MonStgElt)
{Print.}
case lvl:
when "Magma":
if IsGeneric(V) then
printf "VectorSpace(%m, %m)", BaseField(V), Degree(V);
else
printf "<some subspace of %m>", Generic(V);
end if;
else
if IsGeneric(V) then
printf "Full ";
end if;
printf "Vector space of degree %O over %O", Degree(V), lvl, BaseField(V), lvl;
if not IsGeneric(V) then
printf "with generators:";
for gen in Generators(V) do
print "";
IndentPush();
Print(gen, lvl);
IndentPop();
end for;
end if;
end case;
end intrinsic;
///hide
intrinsic Print(v :: ModTupFldElt_FldPadExact, lvl :: MonStgElt)
{"}
xv := BestApproximation(v);
case lvl:
when "Maximal":
printf "%o", xv;
else
printf "%o", Parent(xv) ! [CAP_PR(xc, 1) : xc in Eltseq(xv)];
end case;
end intrinsic;
///hide
intrinsic InterpolateEpochs(x :: ModTupFldElt_FldPadExact, n1 :: RngIntElt, n2 :: RngIntElt, xx2) -> List
{Interpolates between the given epochs.}
return [* EpochApproximation(Parent(x), n) ! xx2 : n in [n1+1..n2-1] *];
end intrinsic;
///hide
intrinsic Ngens(V :: ModTupFld_FldPadExact) -> RngIntElt
{The number of generators of V.}
return #Generators(V);
end intrinsic;
///hide
intrinsic NumberOfNames(V :: ModTupFld_FldPadExact) -> RngIntElt
{"}
return Ngens(V);
end intrinsic;
///hide
intrinsic Name(V :: ModTupFld_FldPadExact, i :: RngIntElt) -> ModTupFldElt_FldPadExact
{The ith generator of V.}
require 0 lt i and i le Ngens(V): "i out of range";
return Generators(V)[i];
end intrinsic;
///hide
intrinsic '.'(V :: ModTupFld_FldPadExact, i :: RngIntElt) -> ModTupFldElt_FldPadExact
{"}
return Name(V, i);
end intrinsic;
///hide
intrinsic AssignNames(~V :: ModTupFld_FldPadExact, names :: [MonStgElt])
{Assigns names to the generators of V.}
require #names le Ngens(V): "too many names";
// do nothing with them!
end intrinsic;
///## Creation of vectors
///priority 2
///### From coefficients
intrinsic Vector(F :: FldPadExact, n :: RngIntElt, cs) -> ModTupFldElt_FldPadExact
{The vector of length n over F defined by cs.}
return KSpace(F, n) ! cs;
end intrinsic;
intrinsic Vector(cs :: [FldPadExactElt]) -> ModTupFldElt_FldPadExact
{The vector whose coefficients are given by cs.}
return Vector(Universe(cs), #cs, cs);
end intrinsic;
///### Special forms
intrinsic Zero(V :: ModTupFld_FldPadExact) -> ModTupFldElt_FldPadExact
{The zero vector.}
if not assigned V`zero then
z := New(ModTupFldElt_FldPadExact);
z`parent := V;
z`dependencies := [* V *];
z`get_approximation := func<n, xds | Zero(xds[1])>;
Init(z);
V`zero := z;
end if;
return V`zero;
end intrinsic;
intrinsic ZeroVector(V :: ModTupFld_FldPadExact) -> ModTupFldElt_FldPadExact
{"}
return Zero(V);
end intrinsic;
intrinsic ZeroVector(F :: FldPadExact, n :: RngIntElt) -> ModTupFldElt_FldPadExact
{"}
return Zero(KSpace(F, n));
end intrinsic;
///### Coercion
///
/// The following can be coerced to a vector in V:
/// - A vector in V
/// - A vector whose components are coercible to the base field of V
/// - A sequence of vector entries, all coercible to the base field
intrinsic IsCoercible(V :: ModTupFld_FldPadExact, X) -> BoolElt, .
{True if X is coercible to an element of V. If so, also returns the coerced element.}
return false, "wrong type";
end intrinsic;
///hide
intrinsic IsCoercible(V :: ModTupFld_FldPadExact, X :: ModTupFldElt_FldPadExact) -> BoolElt, .
{"}
if Parent(X) eq V then
return true, X;
end if;
return IsCoercible(V, Eltseq(X));
end intrinsic;
///hide
intrinsic IsCoercible(V :: ModTupFld_FldPadExact, X :: []) -> BoolElt, .
{"}
if not IsGeneric(V) then
return false, "not implemented for non-generic V";
end if;
if #X ne Degree(V) then
return false, "wrong length";
end if;
ok, xs := CanChangeUniverse(X, BaseField(V));
if not ok then
return false, "coefficients not coercible to base field";
end if;
v := New(ModTupFldElt_FldPadExact);
v`parent := V;
v`dependencies := [* V *] cat [* x : x in xs *];
v`get_approximation := func<n, xds | xds[1] ! [xc : xc in xds[2..#xds]]>;
Init(v);
return true, v;
end intrinsic;
///## Basic properties of vector spaces
///priority 2
intrinsic BaseField(V :: ModTupFld_FldPadExact) -> FldPadExact
{The base field of V.}
return V`base_field;
end intrinsic;
intrinsic BaseField(v :: ModTupFldElt_FldPadExact) -> FldPadExact
{The base field of v.}
return v`parent`base_field;
end intrinsic;
intrinsic Degree(V :: ModTupFld_FldPadExact) -> RngIntElt
{If V is a subspace of `K^n`, returns `n`. That is, the number of columns in vectors in V.}
return V`degree;
end intrinsic;
intrinsic Generic(V :: ModTupFld_FldPadExact) -> ModTupFld_FldPadExact
{The generic vector space containing V.}
return V`generic;
end intrinsic;
intrinsic IsGeneric(V :: ModTupFld_FldPadExact) -> BoolElt
{True if V is generic, i.e. it was created as the full-dimensional vector space with default generators.}
return Generic(V) eq V;
end intrinsic;
intrinsic Dimension(V :: ModTupFld_FldPadExact) -> RngIntElt
{The dimension of V.}
if not assigned V`dimension then
if IsGeneric(V) then
dim := Degree(V);
else
error "not implemented: Dimension";
end if;
V`dimension := dim;
end if;
return V`dimension;
end intrinsic;
intrinsic Generators(V :: ModTupFld_FldPadExact) -> []
{The generators of V.}
if not assigned V`generators then
if IsGeneric(V) then
V`generators := [V| [i eq j select 1 else 0 : j in [1..Degree(V)]] : i in [1..Degree(V)]];
else
V`generators := [V| gen : gen in V`outer_generators];
end if;
end if;
return V`generators;
end intrinsic;
///hide
intrinsic ExistsCoveringStructure(V1 :: ModTupFld_FldPadExact, V2 :: ModTupFld_FldPadExact) -> BoolElt, .
{True if there is a space containing both V1 and V2.}
if V1 eq V2 then
return true, V1;
elif Generic(V1) eq Generic(V2) then
if IsGeneric(V1) then
return true, V1;
elif IsGeneric(V2) then
return true, V2;
else
error "not implemented: joining vector spaces";
end if;
elif Degree(V1) ne Degree(V2) then
return false, _;
end if;
// general case
ok, F := ExistsCoveringStructure(BaseField(V1), BaseField(V2));
if not ok then
return false, _;
elif F eq BaseField(V1) and IsGeneric(V1) then
return true, V1;
elif F eq BaseField(V2) and IsGeneric(V2) then
return true, V2;
else
error "not implemented: joining vector spaces";
end if;
end intrinsic;
///hide
intrinsic CanChangeRing(v :: ModTupFldElt_FldPadExact, F :: FldPadExact) -> BoolElt, ModTupFldElt_FldPadExact
{True if the base ring of v can be changed to F.}
if BaseField(v) eq F then
return true, v;
end if;
ok, E := ExistsCoveringStructure(BaseField(v), F);
if ok then
if IsGeneric(Parent(v)) then
return true, VectorSpace(E, Ncols(v)) ! v;
else
error "not implemented: changing base field of vector space";
end if;
else
return false, _;
end if;
end intrinsic;
///hide
intrinsic ChangeRing(v :: ModTupFldElt_FldPadExact, F :: FldPadExact) -> ModTupFldElt_FldPadExact
{A copy of v with its base field changed to F.}
ok, w := CanChangeRing(v, F);
require ok: "cannot change ring";
return w;
end intrinsic;
///## Vector components
///priority 2
/// Number of rows (always 1) and columns.
intrinsic Nrows(v :: ModTupFldElt_FldPadExact) -> RngIntElt
{The number of rows in v (always 1).}
return 1;
end intrinsic;
///ditto
intrinsic Ncols(v :: ModTupFldElt_FldPadExact) -> RngIntElt
{The number of columns in v.}
return Degree(Parent(v));
end intrinsic;
intrinsic Eltseq(v :: ModTupFldElt_FldPadExact) -> []
{The components of v as a sequence.}
if not assigned v`eltseq then
v`eltseq := [BaseField(v)| Component(v, i) : i in [1..Ncols(v)]];
end if;
return v`eltseq;
end intrinsic;
intrinsic Component(v :: ModTupFldElt_FldPadExact, i :: RngIntElt) -> FldPadExactElt
{The ith component of v.}
if not assigned v`component then
v`component := [BaseField(v)| ];
end if;
if not IsDefined(v`component, i) then
x := New(FldPadExactElt);
x`parent := BaseField(v);
x`dependencies := [* v *];
x`get_approximation := func<n, xds | xds[1][i]>;
Init(x);
v`component[i] := x;
end if;
return v`component[i];
end intrinsic;
intrinsic '@'(i :: RngIntElt, v :: ModTupFldElt_FldPadExact) -> FldPadExactElt
{"}
return Component(v, i);
end intrinsic;
///## Arithmetic
///### Addition
/// Negation, addition, subtraction, sum of vectors.
intrinsic '-'(v :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{Negation.}
if not assigned v`negation then
w := New(ModTupFldElt_FldPadExact);
w`parent := v`parent;
w`dependencies := [* v *];
w`get_approximation := func<n, xds | -xds[1]>;
Init(w);
v`negation := w;
w`negation := v;
end if;
return v`negation;
end intrinsic;
///ditto
intrinsic '+'(v :: ModTupFldElt_FldPadExact, w :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{Addition.}
ok, V := ExistsCoveringStructure(Parent(v), Parent(w));
require ok: "not coercible to the same space";
return &+[V| v, w];
end intrinsic;
///hide
intrinsic '+'(v :: ModTupFldElt_FldPadExact, w) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///hide
intrinsic '+'(v, w :: ModTupFldElt_FldPadExact) -> .
{"}
return do_binop('+', v, w);
end intrinsic;
///ditto
intrinsic '-'(v :: ModTupFldElt_FldPadExact, w :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{Subtraction.}
ok, V := ExistsCoveringStructure(Parent(v), Parent(w));
require ok: "not coercible to the same space";
u := New(ModTupFldElt_FldPadExact);
u`parent := V;
u`dependencies := [* V!v, V!w *];
u`get_approximation := func<n, xds | xds[1] - xds[2]>;
Init(u);
return u;
end intrinsic;
///hide
intrinsic '-'(v :: ModTupFldElt_FldPadExact, w) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///hide
intrinsic '-'(v, w :: ModTupFldElt_FldPadExact) -> .
{"}
return do_binop('-', v, w);
end intrinsic;
///ditto
intrinsic '&+'(vs :: [ModTupFldElt_FldPadExact]) -> ModTupFldElt_FldPadExact
{Sum.}
if #vs eq 0 then
return Zero(Universe(vs));
end if;
u := New(ModTupFldElt_FldPadExact);
u`parent := Universe(vs);
u`dependencies := [* v : v in vs *];
u`get_approximation := func<n, xds | &+[xv : xv in xds]>;
Init(u);
return u;
end intrinsic;
///### Scalar multiplication
/// Scalar multiplication and division of vectors.
intrinsic '*'(v :: ModTupFldElt_FldPadExact, x :: FldPadExactElt) -> ModTupFldElt_FldPadExact
{Scalar multiplication.}
ok, F := ExistsCoveringStructure(BaseField(v), Parent(x));
require ok: "not coercible to same base field";
v2 := ChangeRing(v, F);
x2 := F ! x;
u := New(ModTupFldElt_FldPadExact);
u`parent := Parent(v2);
u`dependencies := [* v2, x2 *];
u`get_approximation := func<n, xds | xds[1] * xds[2]>;
Init(u);
return u;
end intrinsic;
///ditto
intrinsic '*'(x :: FldPadExactElt, v :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{"}
return v * x;
end intrinsic;
///ditto
///param Safe:=false (Divide only.) When true, this may be used as an intermediate variable in [`WithDependencies`]({{site.baseurl}}/internals#WithDependencies) with the `Fast` option.
intrinsic '/'(v :: ModTupFldElt_FldPadExact, x :: FldPadExactElt : Safe:=false) -> ModTupFldElt_FldPadExact
{Scalar division.}
ok, F := ExistsCoveringStructure(BaseField(v), Parent(x));
require ok: "not coercible to same base field";
v2 := ChangeRing(v, F);
x2 := F ! x;
w := New(ModTupFldElt_FldPadExact);
if Safe then
ok, n := IsDefinitelyNonzero(x2 : Minimize);
require ok: "x is weakly zero";
w`min_epoch := n;
else
EnsureAllApproximationsNonzero(x2);
end if;
w`parent := Parent(v2);
w`dependencies := [* v2, x2 *];
w`get_approximation := func<n, xds | xds[1] / xds[2]>;
Init(w);
return w;
end intrinsic;
///### Matrix multiplication
/// Inner product and norm.
intrinsic InnerProduct(v :: ModTupFldElt_FldPadExact, w :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{Inner product.}
ok, V := ExistsCoveringStructure(Parent(v), Parent(w));
require ok: "not coercible to the same space";
u := New(ModTupFldElt_FldPadExact);
u`parent := BaseField(V);
u`dependencies := [* V!v, V!w *];
u`get_approximation := func<n, xds | InnerProduct(xds[1], xds[2])>;
Init(u);
return u;
end intrinsic;
///hide
intrinsic InnerProduct(v :: ModTupFldElt_FldPadExact, w) -> .
{"}
return do_binop(InnerProduct, v, w);
end intrinsic;
///hide
intrinsic InnerProduct(v, w :: ModTupFldElt_FldPadExact) -> .
{"}
return do_binop(InnerProduct, v, w);
end intrinsic;
///ditto
intrinsic Norm(v :: ModTupFldElt_FldPadExact) -> ModTupFldElt_FldPadExact
{Norm.}
if not assigned v`norm then
x := New(FldPadExactElt);
x`parent := BaseField(v);
x`dependencies := [* v *];
x`get_approximation := func<n, xds | Norm(xds[1])>;
Init(x);
v`norm := x;
end if;
return v`norm;
end intrinsic;