We now support two models using PointPillars architecture.
Split | mAPH@L1 | mAPH@L2 | |
---|---|---|---|
PointPillars-512 | Val | 64.1 | 55.8 |
CenterPoint-Pillar-512 | Val | 65.3 | 58.2 |
We have pretrained models available for download which can be requested by filling out this form.
- Follow INSTALL.md to install all required libraries. spconv is optional
- Tensorflow
- Waymo-open-dataset devkit
conda activate centerpoint
pip install waymo-open-dataset-tf-1-15-0==1.2.0
# For Waymo Dataset
└── WAYMO_DATASET_ROOT
├── tfrecord_training
├── tfrecord_validation
Convert the tfrecord data to pickle files.
# train set
python generate_waymo_dataset.py --input_file_pattern='WAYMO_DATASET_ROOT/tfrecord_training/segment-*.tfrecord' --output_filebase='WAYMO_DATASET_ROOT/train/'
# validation set
python generate_waymo_dataset.py --input_file_pattern='WAYMO_DATASET_ROOT/tfrecord_validation/segment-*.tfrecord' --output_filebase='WAYMO_DATASET_ROOT/val/'
Create a symlink to the dataset root
mkdir data && cd data
ln -s WAYMO_DATASET_ROOT
mv WAYMO_DATASET_ROOT Waymo # rename to Waymo
Remember to change the WAYMO_DATASET_ROOT to the actual path in your system.
# train set
python tools/create_data.py waymo_data_prep --root_path=data/Waymo --split train --nsweeps=1
# val set
python tools/create_data.py waymo_data_prep --root_path=data/Waymo --split val --nsweeps=1
In the end, the data and info files should be organized as follows
└── CenterPoint
└── data
└── Waymo
├── tfrecord_training
├── tfrecord_validation
├── train <-- all training frames and annotations
├── val <-- all validation frames and annotations
├── infos_train_01sweeps_filter_zero_gt.pkl
├── infos_val_01sweeps_filter_zero_gt.pkl
Now we only support training and evaluation with gpu. Cpu only mode is not supported.
Use the following command to start a distributed training using 4 GPUs. The models and logs will be saved to work_dirs/CONFIG_NAME
python -m torch.distributed.launch --nproc_per_node=4 ./tools/train.py CONFIG_PATH
For distributed testing with 4 gpus,
python -m torch.distributed.launch --nproc_per_node=4 ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth
For testing with one gpu and see the inference time,
python ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth --speed_test
This will generate a my_preds.bin
file in the work_dir. You can create submission to Waymo server using waymo-open-dataset code by following the instructions here.
If you want to do local evaluation (e.g. for a subset), generate the gt prediction bin files using the script below and follow the waymo instructions here.
python det3d/datasets/waymo/waymo_common.py --info_path data/Waymo/infos_val_01sweeps_filter_zero_gt.pkl --gt