-
Notifications
You must be signed in to change notification settings - Fork 279
/
149 Max Points on a Line.js
69 lines (62 loc) · 1.68 KB
/
149 Max Points on a Line.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
解这个平面几何题有3个要点:
1. 如何判断共线?
两点成一直线,所以两点没有共线不共线之说。对于点p1(x1, y1),p2(x2, y2),p3(x3, y3)来说,共线的条件是p1-p2连线的斜率与p1-p3连线的斜率相同,即
(y2-y1)/(x2-x1) = (y3-y1)/(x3-x1)
所以对共线的n点,其中任意两点连线的斜率相同。
2. 如何判断最多的共线点?
对于每个点p出发,计算该点到所有其他点qi的斜率,对每个斜率统计有多少个点符合。其中最多的个数加1(出发点本身)即为最多的共线点。
3. 特殊情况
当x1 = x2,y1!=y2时,为垂直连线。计算斜率时分母为0会出错。
当x1 = x2,y1 = y2时,两点重合。则(x2, y2)和所有(x1, y1)的连线共线。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
int maxPoints(vector<Point> &points) {
int maxPts = 0;
for(int i=0; i<points.size(); i++) {
int nMax = 0, nSame = 0, nInf = 0;
unordered_map<float,int> comSlopes;
for(int j=i+1; j<points.size(); j++) {
if(points[j].x==points[i].x) {
if(points[j].y==points[i].y)
nSame++;
else
nInf++;
continue;
}
float slope = (float)(points[j].y-points[i].y)/(float)(points[j].x-points[i].x);
comSlopes[slope]++;
nMax = max(nMax, comSlopes[slope]);
}
nMax = max(nMax, nInf)+nSame+1;
maxPts = max(maxPts,nMax);
}
return maxPts;
}
};