-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentiment_sst.py
135 lines (113 loc) · 5.03 KB
/
sentiment_sst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext import data
from torchtext import datasets
class Model(nn.Module):
def __init__(self, vocab_size, dim = 100, nlayers = 15):
super(Model, self).__init__()
self.embeds = nn.Embedding(vocab_size, dim, padding_idx=1)
self.gru = nn.GRU(input_size = dim, hidden_size = dim, num_layers = nlayers, bidirectional=True, dropout = 0.5)
self.fc = nn.Linear(nlayers * 2 * dim, 5)
def forward(self, inputs):
x = self.embeds(inputs)
_, hidden = self.gru(x)
return self.fc(torch.transpose(hidden, 0, 1).contiguous().view(x.size(1), -1))
#return self.fc(hidden.view(x.size(1), -1))
def test_forward():
model = Model(1000).cuda()
inputs = torch.LongTensor(np.arange(20).reshape(5,4)).cuda()
out = model(inputs)
print(out.size())
def get_sst_iter(args):
labels = ['very negative', 'negative', 'neutral', 'positive', 'very positive']
TEXT = data.Field()
LABEL = data.Field(sequential=False)
train, val, test = datasets.SST.splits(TEXT, LABEL, fine_grained=True, train_subtrees=True,
filter_pred=lambda ex: ex.label != 'neutral')
# print information about the data
print('train.fields', train.fields)
print('len(train)', len(train))
print('len(test)', len(test))
print('len(val)', len(val))
print('vars(train[1])', vars(train[1]))
print('vars(test[1])', vars(test[1]))
TEXT.build_vocab(train)
LABEL.build_vocab(train)
LABEL.vocab.stoi = { w: i for i, w in enumerate(labels) }
LABEL.vocab.itos = { i: labels[i] for i in range(len(labels)) }
print(LABEL.vocab.stoi)
print(LABEL.vocab.itos)
print('<pad>:', TEXT.vocab.stoi['<pad>'])
print('len(TEXT.vocab)', len(TEXT.vocab))
#print('TEXT.vocab.vectors.size()', TEXT.vocab.vectors.size())
train_iter, val_iter, test_iter = data.BucketIterator.splits(
(train, val, test), batch_size=args.batch_size)
return train_iter, val_iter, test_iter, TEXT.vocab
# make splits for data
#train, test = datasets.IMDB.splits(TEXT, LABEL)
def save_model(args, model, filename):
if not os.path.exists(args.model_dir):
os.mkdir(args.model_dir)
torch.save(model.state_dict(), os.path.join(args.model_dir, filename))
def validate(model, val_iter, criterion):
model.eval()
val_loss = 0
corrects = 0
num = 0
with torch.no_grad():
for batch in iter(val_iter):
#inputs, label = inputs.to(device), label.to(device)
output = model(batch.text)
val_loss += criterion(output, batch.label).item()
preds = output.max(1, keepdim=True)[1]
corrects += preds.eq(batch.label.view_as(preds)).sum().item()
num += len(batch.label)
print(num, end='\r')
return val_loss, corrects, num
def show_batch(batch, text_vocab):
ix = torch.transpose(batch.text, 0, 1)
for index in ix:
sentence = [text_vocab.itos[i] for i in index]
print(sentence)
def train(args):
train_iter, val_iter, test_iter, vocab = get_sst_iter(args)
model = Model(len(vocab)).cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
#optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
best_corrects = 0
nIteration = 0
numTrain = 0
for batch in iter(train_iter):
nIteration += 1
model.train()
#label = torch.index_select(torch.eye(5, dtype=torch.long).cuda(), 0, batch.label)
optimizer.zero_grad()
output = model(batch.text)
#print(output.size(), label.size())
#print(batch.label)
loss = criterion(output, batch.label)
loss.backward()
optimizer.step()
numTrain += len(batch)
preds = output.max(1, keepdim=True)[1]
corrects = preds.eq(batch.label.view_as(preds)).sum().item()
print('Epoch: {:.2f} \tLoss: {:.4f} \t Acc: {}/{}'.format(numTrain / len(train_iter.dataset), loss.item(), corrects, len(batch)), end='\r')
if nIteration % 200 == 0:
val_loss, corrects, num = validate(model, val_iter, criterion)
val_loss /= (num / args.batch_size)
print('\nValidation loss: {:.4f}, Validation accuracy: {}/{} ({:.02f}%)\n'.format(
val_loss, corrects, num, 100. * corrects / num))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.005, help="Learning rate", required=False)
parser.add_argument("--batch_size", type=int, default=1024, help="Batch size", required=False)
parser.add_argument('--epochs', type=int, default=20, help='Number of training epochs', required=False)
parser.add_argument('--data_dir', type=str, default='data', help='Directory to put training data', required=False)
parser.add_argument('--model_dir', type=str, default='model', help='Directory to save models', required=False)
args, unknown = parser.parse_known_args()
train(args)