-
Notifications
You must be signed in to change notification settings - Fork 44
/
FittingTriPoly_test.go
111 lines (101 loc) · 3.48 KB
/
FittingTriPoly_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// FittingTriPoly_test
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-23
版本 : 0.0.0
------------------------------------------------------
基于傅立叶(Fourier)级数的三角多项式拟合
理论:
若f(x)周期为2pi,则存在M(2M<N)阶傅立叶(Fourier)级数
使得N+1个数据对(xi等距分布)的拟合表示为:
a0 M
TM(x) = --- + Sum (aj*cos(jx)+bj*sin(jx))
2 j=1
其中
2 N
aj = ---Sum yk*cos(j*xk), j=0,1,2,...,M
N k=1
2 N
bj = ---Sum yk*sin(j*xk), j=1,2,...,M
N k=1
参考:John H. Mathews and Kurtis D. Fink. Numerical
methods using MATLAB, 4th ed. Pearson
Education, 2004. ss 5.4.1
------------------------------------------------------
输入 :
XY 数据对,nx2,x-y
M 傅立叶级数,< N/2
输出 :
sol 解,(M+1)x2
err 解出标志:false-未解出或达到边界;
true-全部解出
------------------------------------------------------
*/
package goNum_test
import (
"math"
"testing"
"github.com/chfenger/goNum"
)
// FittingTriPoly 基于傅立叶(Fourier)级数的三角多项式拟合
func FittingTriPoly(XY goNum.Matrix, M int) (goNum.Matrix, bool) {
/*
基于傅立叶(Fourier)级数的三角多项式拟合
输入 :
XY 数据对,nx2,x-y
M 傅立叶级数,< N/2
输出 :
sol 解,(M+1)x2
err 解出标志:false-未解出或达到边界;
true-全部解出
*/
//判断维数
if XY.Columns < 2 {
panic("Error in goNum.FittingTriPoly: At least 2 columns of XY needed")
}
N := XY.Rows
//判断M
if float64(M) >= float64(N)/2.0 {
panic("Error in goNum.FittingTriPoly: M is wrong")
}
sol := goNum.ZeroMatrix(M+1, 2) //b0=0.0
var err bool = false
//a0
var a0 float64
for k := 1; k < N; k++ {
// a0 += XY.GetFromMatrix(k, 1) * math.Cos(0.0*XY.GetFromMatrix(k, 0))
a0 += XY.GetFromMatrix(k, 1)
}
sol.SetMatrix(0, 0, 2.0*a0/float64(N))
//aj, bj
for j := 1; j < M+1; j++ {
var aj, bj float64
for k := 1; k < N; k++ {
aj += XY.GetFromMatrix(k, 1) * math.Cos(float64(j)*XY.GetFromMatrix(k, 0))
bj += XY.GetFromMatrix(k, 1) * math.Sin(float64(j)*XY.GetFromMatrix(k, 0))
}
sol.SetMatrix(j, 0, 2.0*aj/float64(N))
sol.SetMatrix(j, 1, 2.0*bj/float64(N))
}
err = true
return sol, err
}
func BenchmarkFittingTriPoly(b *testing.B) {
xy48 := goNum.NewMatrix(12, 2, []float64{
1.0*math.Pi/6.0 - math.Pi, (1.0*math.Pi/6.0 - math.Pi) / 2.0,
2.0*math.Pi/6.0 - math.Pi, (2.0*math.Pi/6.0 - math.Pi) / 2.0,
3.0*math.Pi/6.0 - math.Pi, (3.0*math.Pi/6.0 - math.Pi) / 2.0,
4.0*math.Pi/6.0 - math.Pi, (4.0*math.Pi/6.0 - math.Pi) / 2.0,
5.0*math.Pi/6.0 - math.Pi, (5.0*math.Pi/6.0 - math.Pi) / 2.0,
6.0*math.Pi/6.0 - math.Pi, (6.0*math.Pi/6.0 - math.Pi) / 2.0,
7.0*math.Pi/6.0 - math.Pi, (7.0*math.Pi/6.0 - math.Pi) / 2.0,
8.0*math.Pi/6.0 - math.Pi, (8.0*math.Pi/6.0 - math.Pi) / 2.0,
9.0*math.Pi/6.0 - math.Pi, (9.0*math.Pi/6.0 - math.Pi) / 2.0,
10.0*math.Pi/6.0 - math.Pi, (10.0*math.Pi/6.0 - math.Pi) / 2.0,
11.0*math.Pi/6.0 - math.Pi, (11.0*math.Pi/6.0 - math.Pi) / 2.0,
12.0*math.Pi/6.0 - math.Pi, (12.0*math.Pi/6.0 - math.Pi) / 2.0})
for i := 0; i < b.N; i++ {
goNum.FittingTriPoly(xy48, 5)
}
}