:TODO: python framework mataflow from metaflow import FlowSpec, step
:TODO: python framework sklearn from sklearn.pipeline import Pipeline
graph LR;
A[<b>Data In</b>
* filtered
* cleaned
* labeled
] -->
B(<b>ML Algorithm</b>
* frameworks
* algorithms
🔄️
);
B -->
C(<b>Data out</b>
✅️ example 🆗️
)
graph
m[<b>model</b>]
t[training]
i[inference]
t --associate--> m
i --associate--> m
r[regression
model]
c[classification
model]
c --extend--> m
r --extend--> m
l[label]
l --assign
to -->m
id[input data]
f[feature]
f --o id
idl[ <b>input data</b>
labeled
for training]
idnl[<b>input data</b>
not labeled
for prediction]
idl --extend--> id
idnl --extend--> id
l --o idl
id ~~~ i
graph LR;
d[design] --> md[model <br>development] --> o[operations]
md --> d
o --> md
- Requirement engineering
- ML UseCases prioritization
- Data Availability Check
- Data Engineering
- ML Model Engineering
- Model Testing & Validation
- ML Model Deployment
- CI/CD pipelines
- Monitoring & triggering
- 'double' ML
pip install econml
- Google Jupyter Notebook