-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
258 lines (213 loc) · 9.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Supervised training of PolyGNN.
"""
import os
from pathlib import Path
import wandb
import hydra
from omegaconf import DictConfig
from tqdm import tqdm
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch_geometric.loader import DataLoader
from torch_geometric import compile
from torchmetrics.classification import BinaryAccuracy
from network import PolyGNN, focal_loss, bce_loss
from dataset import CityDataset
from utils import init_device, Sampler, set_seed, attach_to_log, setup_runner
def run_train(rank, world_size, dataset_train, dataset_test, cfg):
"""
Runner function for distributed training of PolyGNN.
"""
# set up runner
setup_runner(rank, world_size, cfg.master_addr, cfg.master_port)
# limit number of threads
torch.set_num_threads(cfg.num_workers // world_size)
# initialize logging
logger = attach_to_log(filepath='./outputs/train.log')
if rank == 0:
logger.info(f'Training PolyGNN on {cfg.dataset}')
wandb_mode = 'online' if cfg.wandb else 'disabled'
wandb.init(mode=wandb_mode, project='polygnn', entity='zhaiyu',
name=cfg.dataset+cfg.run_suffix, dir=cfg.wandb_dir)
wandb.save('./outputs/.hydra/*')
# indicate device
logger.debug(f"Device activated: " + f"CUDA: {cfg.gpu_ids[rank]}")
# split training indices into `world_size` many chunks
train_indices = torch.arange(len(dataset_train))
train_indices = train_indices.split(len(train_indices) // world_size)[rank]
eval_indices = torch.arange(len(dataset_test))
eval_indices = eval_indices.split(len(eval_indices) // world_size)[rank]
# setup dataloaders
dataloader_train = DataLoader(dataset_train[train_indices], batch_size=cfg.batch_size // world_size,
shuffle=cfg.shuffle, num_workers=cfg.num_workers // world_size,
pin_memory=True, prefetch_factor=8)
dataloader_test = DataLoader(dataset_test[eval_indices], batch_size=cfg.batch_size // world_size,
shuffle=cfg.shuffle, num_workers=cfg.num_workers // world_size,
pin_memory=True, prefetch_factor=8)
# initialize model
model = PolyGNN(cfg).to(rank)
# distributed parallelization
model = DistributedDataParallel(model, device_ids=[rank])
# compile model for better performance
compile(model, dynamic=True, fullgraph=True)
# freeze certain layers for fine-tuning
if cfg.warm:
for stage in cfg.freeze_stages:
logger.info(f'Freezing stage: {stage}')
for parameter in getattr(model, stage).parameters():
parameter.requires_grad = False
# initialize optimizer and scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay)
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=cfg.scheduler.base_lr, max_lr=cfg.scheduler.max_lr,
step_size_up=cfg.scheduler.step_size_up, mode=cfg.scheduler.mode,
cycle_momentum=False)
# initialize metrics
metric = BinaryAccuracy().to(rank)
# warm start from checkpoint if available
if cfg.warm:
if rank == 0:
logger.info(f'Resuming from {cfg.checkpoint_path}')
map_location = f'cuda:{rank}'
state = torch.load(cfg.checkpoint_path, map_location=map_location)
state_dict = state['state_dict']
model.load_state_dict(state_dict, strict=False)
if cfg.warm_optimizer:
try:
optimizer.load_state_dict(state['optimizer'])
if rank == 0:
logger.info(f'Optimizer loaded from checkpoint')
except (KeyError, ValueError) as error:
if rank == 0:
logger.warning(f'Optimizer not loaded from checkpoint: {error}')
if cfg.warm_scheduler:
try:
scheduler.load_state_dict(state['scheduler'])
if rank == 0:
logger.info(f'Scheduler loaded from checkpoint')
except (KeyError, ValueError) as error:
if rank == 0:
logger.warning(f'Scheduler not loaded from checkpoint: {error}')
best_accuracy = state['accuracy']
if state['epoch'] > cfg.num_epochs:
if rank == 0:
logger.info(f'Expected epoch reached from checkpoint')
return
epoch_generator = range(state['epoch'] + 1, cfg.num_epochs)
else:
best_accuracy = 0
epoch_generator = range(cfg.num_epochs)
# initialize loss function
if cfg.loss == 'focal':
loss_func = focal_loss
elif cfg.loss == 'bce':
loss_func = bce_loss
else:
raise ValueError(f'Unexpected loss function: {cfg.loss}')
# specify data attributes
if cfg.sample.strategy == 'grid':
points_suffix = f'_{cfg.sample.resolution}'
elif cfg.sample.strategy == 'random':
points_suffix = f'_{cfg.sample.length}'
else:
points_suffix = ''
# start training
for i in epoch_generator:
model.train()
pbar = tqdm(dataloader_train, desc=f'epoch {i}', disable=rank != 0)
if rank == 0:
wandb.log({"epoch": i})
for batch in pbar:
optimizer.zero_grad()
batch = batch.to(rank, f'points{points_suffix}', f'batch_points{points_suffix}', 'queries', 'edge_index',
'batch', 'y')
outs = model(batch)
targets = batch.y
loss, accuracy, ratio, _, _ = loss_func(outs, targets)
if rank == 0:
wandb.log({"loss": loss})
wandb.log({"train_accuracy": accuracy})
wandb.log({"ratio:": ratio})
wandb.log({"learning_rate": optimizer.param_groups[0]['lr']})
pbar.set_postfix_str('loss={:.2f}, acc={:.2f}, ratio={:.2f}'.format(loss, accuracy, ratio))
loss.backward()
optimizer.step()
scheduler.step()
dist.barrier()
# validate and save checkpoint with DDP
if cfg.validate and i % cfg.save_interval == 0:
model.metric = metric
model = model.to(rank)
model.eval()
pbar = tqdm(dataloader_test, desc=f'eval', disable=rank != 0)
with torch.no_grad():
for batch in pbar:
batch = batch.to(rank, f'points{points_suffix}', f'batch_points{points_suffix}', 'queries',
'edge_index', 'batch', 'y')
outs = model(batch)
outs = outs.argmax(dim=1)
targets = batch.y
# metric on current batch
accuracy = metric(outs, targets)
if rank == 0:
pbar.set_postfix_str('acc={:.2f}'.format(accuracy))
# metrics on all batches and all accelerators using custom accumulation
accuracy = metric.compute()
dist.barrier()
if rank == 0:
logger.info(f'Evaluation accuracy: {accuracy:.4f}')
wandb.log({"eval_accuracy": accuracy})
checkpoint_path = os.path.join(cfg.checkpoint_dir, f'model_epoch{i}.pth')
logger.info(f'Saving checkpoint to {checkpoint_path}.')
Path(cfg.checkpoint_dir).mkdir(parents=True, exist_ok=True)
state = {
'epoch': i,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'accuracy': accuracy,
}
# Cannot pickle 'WeakMethod' object when saving state_dict for CyclicLr
# https://github.com/pytorch/pytorch/pull/91400
torch.save(state, checkpoint_path)
if accuracy > best_accuracy:
logger.info(f'Saving checkpoint to {cfg.checkpoint_path}.')
torch.save(state, cfg.checkpoint_path)
wandb.save(cfg.checkpoint_path)
best_accuracy = accuracy
# reset internal state such that metric ready for new data
metric.reset()
dist.barrier()
dist.destroy_process_group()
@hydra.main(config_path='./conf', config_name='config', version_base='1.2')
def train(cfg: DictConfig):
"""
Train PolyGNN.
Parameters
----------
cfg: DictConfig
Hydra configuration
"""
logger = attach_to_log(filepath='./outputs/train.log')
# initialize device
init_device(cfg.gpu_ids, register_freeze=cfg.gpu_freeze)
logger.info(f"Device initialized: " + f"CUDA: {cfg.gpu_ids}")
# fix randomness
set_seed(cfg.seed)
logger.info(f"Random seed set to {cfg.seed}")
# initialize data sampler
sampler = Sampler(strategy=cfg.sample.strategy, length=cfg.sample.length, ratio=cfg.sample.ratio,
resolutions=cfg.sample.resolutions, duplicate=cfg.sample.duplicate, seed=cfg.seed)
transform = sampler.sample if cfg.sample.transform else None
pre_transform = sampler.sample if cfg.sample.pre_transform else None
# initialize dataset
dataset_train = CityDataset(pre_transform=pre_transform, transform=transform, root=cfg.data_dir,
split='train', num_workers=cfg.num_workers, num_queries=cfg.num_queries)
dataset_test = CityDataset(pre_transform=pre_transform, transform=transform, root=cfg.data_dir,
split='test', num_workers=cfg.num_workers, num_queries=cfg.num_queries)
world_size = len(cfg.gpu_ids)
mp.spawn(run_train, args=(world_size, dataset_train, dataset_test, cfg), nprocs=world_size, join=True)
if __name__ == '__main__':
train()