Skip to content

Commit e61262c

Browse files
authored
Merge branch 'master' into dem_encapsulate-load-balancing
2 parents c04646a + 21b7d0f commit e61262c

File tree

52 files changed

+264
-317
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

52 files changed

+264
-317
lines changed

CHANGELOG.md

+7
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,13 @@
33
All notable changes to the Lethe project will be documented in this file.
44
The format is based on [Keep a Changelog](http://keepachangelog.com/).
55

6+
7+
## [Master] - 2024-07-20
8+
9+
### Fixed
10+
11+
- MINOR The ratio of the critical Rayleigh time step was wrong in CFD-DEM and was modified as done in DEM. [#1203](https://github.com/chaos-polymtl/lethe/pull/1203)
12+
613
## [Master] - 2024-07-18
714

815
### Changed
Original file line numberDiff line numberDiff line change
@@ -1,23 +1,23 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 2.34951% of Rayleigh time step
3-
Reading DEM checkpoint
4-
Finished reading DEM checkpoint
5-
350 particles are in the simulation
2+
DEM time-step is 2.61468% of Rayleigh time step
3+
Reading DEM checkpoint
4+
Finished reading DEM checkpoint
5+
350 particles are in the simulation
66
Number of active cells: 8
77
Number of degrees of freedom: 144
88
Volume of triangulation: 0.00125
99
---------------------------------------------------------------
10-
Initializing DEM parameters
11-
Warning: expansion of particle-wall contact list is disabled.
12-
This feature is useful in geometries with concave boundaries.
13-
Finished initializing DEM parameters
14-
DEM time-step is 2e-05 s
10+
Initializing DEM parameters
11+
Warning: expansion of particle-wall contact list is disabled.
12+
This feature is useful in geometries with concave boundaries.
13+
Finished initializing DEM parameters
14+
DEM time-step is 2e-05 s
1515
--------------
1616
Void Fraction
1717
--------------
1818

1919
*******************************************************************************
20-
Transient iteration: 1 Time: 0.001 Time step: 0.001 CFL: 0
20+
Transient iteration: 1 Time: 0.001 Time step: 0.001 CFL: 0
2121
*******************************************************************************
2222
--------------
2323
Void Fraction
@@ -30,7 +30,7 @@ DEM
3030
----
3131
DEM contact search at dem step 0
3232
DEM contact search at dem step 1
33-
Finished 50 DEM iterations
33+
Finished 50 DEM iterations
3434
---------------------------------------------------------------
3535
Global continuity equation error: 2.803e-09 s^-1
3636
Max local continuity error: 7.07295e-08 s^-1
@@ -44,140 +44,86 @@ Void Fraction
4444
-------------------------------
4545
Volume-Averaged Fluid Dynamics
4646
-------------------------------
47-
----
48-
DEM
49-
----
50-
DEM contact search at dem step 1
51-
Finished 50 DEM iterations
52-
---------------------------------------------------------------
53-
Global continuity equation error: -1.26904e-09 s^-1
54-
Max local continuity error: 7.28588e-07 s^-1
55-
56-
**********************************************************************************
57-
Transient iteration: 3 Time: 0.003 Time step: 0.001 CFL: 0.000149645
58-
**********************************************************************************
59-
--------------
60-
Void Fraction
61-
--------------
62-
-------------------------------
63-
Volume-Averaged Fluid Dynamics
64-
-------------------------------
65-
----
66-
DEM
67-
----
68-
DEM contact search at dem step 1
69-
Finished 50 DEM iterations
70-
---------------------------------------------------------------
71-
Global continuity equation error: 3.9841e-09 s^-1
72-
Max local continuity error: 1.05602e-06 s^-1
73-
74-
**********************************************************************************
75-
Transient iteration: 4 Time: 0.004 Time step: 0.001 CFL: 0.000224447
76-
**********************************************************************************
77-
--------------
78-
Void Fraction
79-
--------------
80-
-------------------------------
81-
Volume-Averaged Fluid Dynamics
82-
-------------------------------
83-
----
84-
DEM
85-
----
86-
DEM contact search at dem step 1
87-
Finished 50 DEM iterations
88-
---------------------------------------------------------------
89-
Global continuity equation error: 1.16336e-09 s^-1
90-
Max local continuity error: 1.41713e-06 s^-1
91-
92-
**********************************************************************************
93-
Transient iteration: 5 Time: 0.005 Time step: 0.001 CFL: 0.000299344
94-
**********************************************************************************
95-
--------------
96-
Void Fraction
97-
--------------
98-
-------------------------------
99-
Volume-Averaged Fluid Dynamics
100-
-------------------------------
10147
print_from_processor_0
10248
8
10349
[deal.II intermediate Patch<3,3>]
10450
7
105-
0 0 0 0.05 0 0 0 0.0625 0 0.05 0.0625 0 0 0 0.05 0.05 0 0.05 0 0.0625 0.05 0.05 0.0625 0.05
106-
4294967295 4294967295 4294967295 1 4294967295 4294967295
51+
0 0 0 0.05 0 0 0 0.0625 0 0.05 0.0625 0 0 0 0.05 0.05 0 0.05 0 0.0625 0.05 0.05 0.0625 0.05
52+
4294967295 4294967295 4294967295 1 4294967295 4294967295
10753
0 1
10854
0
10955
1 8
110-
4 4 4 4 4 4 4 4
56+
4 4 4 4 4 4 4 4
11157

11258

11359
[deal.II intermediate Patch<3,3>]
11460
7
115-
0 0.0625 0 0.05 0.0625 0 0 0.125 0 0.05 0.125 0 0 0.0625 0.05 0.05 0.0625 0.05 0 0.125 0.05 0.05 0.125 0.05
116-
4294967295 4294967295 0 2 4294967295 4294967295
61+
0 0.0625 0 0.05 0.0625 0 0 0.125 0 0.05 0.125 0 0 0.0625 0.05 0.05 0.0625 0.05 0 0.125 0.05 0.05 0.125 0.05
62+
4294967295 4294967295 0 2 4294967295 4294967295
11763
1 1
11864
0
11965
1 8
120-
4 4 4 4 4 4 4 4
66+
4 4 4 4 4 4 4 4
12167

12268

12369
[deal.II intermediate Patch<3,3>]
12470
7
125-
0 0.125 0 0.05 0.125 0 0 0.1875 0 0.05 0.1875 0 0 0.125 0.05 0.05 0.125 0.05 0 0.1875 0.05 0.05 0.1875 0.05
126-
4294967295 4294967295 1 3 4294967295 4294967295
71+
0 0.125 0 0.05 0.125 0 0 0.1875 0 0.05 0.1875 0 0 0.125 0.05 0.05 0.125 0.05 0 0.1875 0.05 0.05 0.1875 0.05
72+
4294967295 4294967295 1 3 4294967295 4294967295
12773
2 1
12874
0
12975
1 8
130-
4 4 4 4 4 4 4 4
76+
3 3 3 3 3 3 3 3
13177

13278

13379
[deal.II intermediate Patch<3,3>]
13480
7
135-
0 0.1875 0 0.05 0.1875 0 0 0.25 0 0.05 0.25 0 0 0.1875 0.05 0.05 0.1875 0.05 0 0.25 0.05 0.05 0.25 0.05
136-
4294967295 4294967295 2 4 4294967295 4294967295
81+
0 0.1875 0 0.05 0.1875 0 0 0.25 0 0.05 0.25 0 0 0.1875 0.05 0.05 0.1875 0.05 0 0.25 0.05 0.05 0.25 0.05
82+
4294967295 4294967295 2 4 4294967295 4294967295
13783
3 1
13884
0
13985
1 8
140-
4 4 4 4 4 4 4 4
86+
2 2 2 2 2 2 2 2
14187

14288

14389
[deal.II intermediate Patch<3,3>]
14490
7
145-
0 0.25 0 0.05 0.25 0 0 0.3125 0 0.05 0.3125 0 0 0.25 0.05 0.05 0.25 0.05 0 0.3125 0.05 0.05 0.3125 0.05
146-
4294967295 4294967295 3 5 4294967295 4294967295
91+
0 0.25 0 0.05 0.25 0 0 0.3125 0 0.05 0.3125 0 0 0.25 0.05 0.05 0.25 0.05 0 0.3125 0.05 0.05 0.3125 0.05
92+
4294967295 4294967295 3 5 4294967295 4294967295
14793
4 1
14894
0
14995
1 8
150-
4 4 4 4 4 4 4 4
96+
3 3 3 3 3 3 3 3
15197

15298

15399
[deal.II intermediate Patch<3,3>]
154100
7
155-
0 0.3125 0 0.05 0.3125 0 0 0.375 0 0.05 0.375 0 0 0.3125 0.05 0.05 0.3125 0.05 0 0.375 0.05 0.05 0.375 0.05
156-
4294967295 4294967295 4 6 4294967295 4294967295
101+
0 0.3125 0 0.05 0.3125 0 0 0.375 0 0.05 0.375 0 0 0.3125 0.05 0.05 0.3125 0.05 0 0.375 0.05 0.05 0.375 0.05
102+
4294967295 4294967295 4 6 4294967295 4294967295
157103
5 1
158104
0
159105
1 8
160-
4 4 4 4 4 4 4 4
106+
4 4 4 4 4 4 4 4
161107

162108

163109
[deal.II intermediate Patch<3,3>]
164110
7
165-
0 0.375 0 0.05 0.375 0 0 0.4375 0 0.05 0.4375 0 0 0.375 0.05 0.05 0.375 0.05 0 0.4375 0.05 0.05 0.4375 0.05
166-
4294967295 4294967295 5 7 4294967295 4294967295
111+
0 0.375 0 0.05 0.375 0 0 0.4375 0 0.05 0.4375 0 0 0.375 0.05 0.05 0.375 0.05 0 0.4375 0.05 0.05 0.4375 0.05
112+
4294967295 4294967295 5 7 4294967295 4294967295
167113
6 1
168114
0
169115
1 8
170-
4 4 4 4 4 4 4 4
116+
4 4 4 4 4 4 4 4
171117

172118

173119
[deal.II intermediate Patch<3,3>]
174120
7
175-
0 0.4375 0 0.05 0.4375 0 0 0.5 0 0.05 0.5 0 0 0.4375 0.05 0.05 0.4375 0.05 0 0.5 0.05 0.05 0.5 0.05
176-
4294967295 4294967295 6 4294967295 4294967295 4294967295
121+
0 0.4375 0 0.05 0.4375 0 0 0.5 0 0.05 0.5 0 0 0.4375 0.05 0.05 0.4375 0.05 0 0.5 0.05 0.05 0.5 0.05
122+
4294967295 4294967295 6 4294967295 4294967295 4294967295
177123
7 1
178124
0
179125
1 8
180-
4 4 4 4 4 4 4 4
126+
4 4 4 4 4 4 4 4
181127

182128

183129
0
@@ -186,7 +132,7 @@ print_from_processor_0
186132
DEM
187133
----
188134
DEM contact search at dem step 1
189-
Finished 50 DEM iterations
135+
Finished 50 DEM iterations
190136
---------------------------------------------------------------
191-
Global continuity equation error: -8.07686e-10 s^-1
192-
Max local continuity error: 1.81029e-06 s^-1
137+
Global continuity equation error: -2.28117e-09 s^-1
138+
Max local continuity error: 6.96484e-07 s^-1

applications_tests/lethe-fluid-particles/adaptive_sparse_contacts.prm

+2-2
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ subsection simulation control
1313
set output frequency = 0
1414
set log frequency = 1
1515
set startup time scaling = 0.6
16-
set time end = 0.005
16+
set time end = 0.002
1717
set time step = 0.001
1818
end
1919

@@ -51,7 +51,7 @@ subsection model parameters
5151
subsection adaptive sparse contacts
5252
set enable adaptive sparse contacts = true
5353
set enable particle advection = true
54-
set granular temperature threshold = 1e-4
54+
set granular temperature threshold = 5e-4
5555
set solid fraction threshold = 0.1
5656
end
5757
end

applications_tests/lethe-fluid-particles/conserve_phase_volumes.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 2.186842813% of Rayleigh time step
2+
DEM time-step is 2.433653979% of Rayleigh time step
33
Reading DEM checkpoint
44
Finished reading DEM checkpoint
55
10000 particles are in the simulation

applications_tests/lethe-fluid-particles/dynamic_contact_search.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 16.41771423% of Rayleigh time step
2+
DEM time-step is 18.27064813% of Rayleigh time step
33
Reading DEM checkpoint
44
Finished reading DEM checkpoint
55
1 particles are in the simulation

applications_tests/lethe-fluid-particles/liquid_fluidized_bed.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 2.186842813% of Rayleigh time step
2+
DEM time-step is 2.433653979% of Rayleigh time step
33
Reading DEM checkpoint
44
Finished reading DEM checkpoint
55
10000 particles are in the simulation

applications_tests/lethe-fluid-particles/particle_sedimentation.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 16.41771423% of Rayleigh time step
2+
DEM time-step is 18.27064813% of Rayleigh time step
33
Reading DEM checkpoint
44
Finished reading DEM checkpoint
55
1 particles are in the simulation

applications_tests/lethe-fluid-particles/periodic_particles_qcm.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 4.74073% of Rayleigh time step
2+
DEM time-step is 5.13612% of Rayleigh time step
33
Reading DEM checkpoint
44
Finished reading DEM checkpoint
55
2 particles are in the simulation

applications_tests/lethe-fluid-particles/restart-gas-solid-fluidized-bed.mpirun=2.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 2 MPI rank(s)...
2-
DEM time-step is 3.28354% of Rayleigh time step
2+
DEM time-step is 3.65413% of Rayleigh time step
33
Number of active cells: 40
44
Number of degrees of freedom: 656
55
Volume of triangulation: 0.00108

applications_tests/lethe-fluid-particles/restart_particle_sedimentation.mpirun=1.output

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Running on 1 MPI rank(s)...
2-
DEM time-step is 16.41771423% of Rayleigh time step
2+
DEM time-step is 18.27064813% of Rayleigh time step
33
Number of active cells: 25
44
Number of degrees of freedom: 192
55
Volume of triangulation: 0.001

doc/source/examples/incompressible-flow/2d-backward-facing-step/2d-backward-facing-step.rst

+6-6
Original file line numberDiff line numberDiff line change
@@ -300,7 +300,7 @@ where the final value of :math:`x_r` is :math:`2.893`. We notice from the graph
300300

301301
.. image:: image/Reynolds100-error-analysis.png
302302

303-
The reference value used in the error analysis is taken from Erturk (2008) `[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_.
303+
The reference value used in the error analysis is taken from Erturk (2008) [#erturk2008]_.
304304

305305

306306
Higher Reynolds Number (:math:`Re=1000`)
@@ -324,11 +324,11 @@ Validation and Comparison
324324
Reattachment Length
325325
~~~~~~~~~~~~~~~~~~~
326326

327-
In this section, the solutions obtained with Lethe are compared with data that can be found in the scientific literature (Erturk (2008) `[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_, Armaly and al. (1983) `[2] <https://doi.org/10.1017/S0022112083002839>`_ and Velivelli and Bryden (2015) `[3] <https://doi.org/10.1016/j.advengsoft.2014.11.006>`_). Several studies include datasets of :math:`x_r/h = f(Re)` (reattachment length) either experimentally or numerically. The next figure illustrates some of them in comparison with *Lethe*.
327+
In this section, the solutions obtained with Lethe are compared with data that can be found in the scientific literature (Erturk (2008) [#erturk2008]_, Armaly and al. (1983) [#armaly1983]_ and Velivelli and Bryden (2015) [#velivelli2015]_). Several studies include datasets of :math:`x_r/h = f(Re)` (reattachment length) either experimentally or numerically. The next figure illustrates some of them in comparison with *Lethe*.
328328

329329
.. image:: image/xr-comparison.png
330330

331-
First, the results provided by Lethe are identical or so to all of the three selected studies for low Reynolds numbers (:math:`Re \leq 400`). After that point, both results form *Lethe* and from Erturk (2008) `[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_ diverge from the experimental data of Armaly and al. (1983) `[2] <https://doi.org/10.1017/S0022112083002839>`_. According to `[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_, this error is due to 3D effects that are more potent as the flow becomes more and more turbulent. Furthermore, there is also a less significant but clearly noticeable error between *Lethe* and Erturk (2008) `[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_: the fact that certain tolerances have been set higher for higher Reynolds number cases might have underestimated the reattachment length. Also, first order elements have been used throughout the whole simulation process. Using second order elements for velocity, for instance, could yield better results for higher Reynolds numbers, however, at a higher computational cost. The following table illustrates the error at :math:`Re = 600` for first and second order velocity elements.
331+
First, the results provided by Lethe are identical or so to all of the three selected studies for low Reynolds numbers (:math:`Re \leq 400`). After that point, both results form *Lethe* and from Erturk (2008) [#erturk2008]_ diverge from the experimental data of Armaly and al. (1983) [#armaly1983]_. According to [#erturk2008]_, this error is due to 3D effects that are more potent as the flow becomes more and more turbulent. Furthermore, there is also a less significant but clearly noticeable error between *Lethe* and Erturk (2008) [#erturk2008]_: the fact that certain tolerances have been set higher for higher Reynolds number cases might have underestimated the reattachment length. Also, first order elements have been used throughout the whole simulation process. Using second order elements for velocity, for instance, could yield better results for higher Reynolds numbers, however, at a higher computational cost. The following table illustrates the error at :math:`Re = 600` for first and second order velocity elements.
332332

333333
+---------------+----------------+----------------+
334334
| Order | :math:`x_r/h` | Error |
@@ -369,11 +369,11 @@ Possibilities for Extension
369369
References
370370
----------
371371

372-
`[1] <https://doi.org/10.1016/j.compfluid.2007.09.003>`_ E. Erturk, “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions,” *Comput. Fluids*, vol. 37, no. 6, pp. 633–655, Jul. 2008, doi: 10.1016/j.compfluid.2007.09.003.
372+
.. [#erturk2008] \E. Erturk, “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions,” *Comput. Fluids*, vol. 37, no. 6, pp. 633–655, Jul. 2008, doi: `10.1016/j.compfluid.2007.09.003 <https://doi.org/10.1016/j.compfluid.2007.09.003>`_\.
373373
374-
`[2] <https://doi.org/10.1017/S0022112083002839>`_ B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schönung, “Experimental and theoretical investigation of backward-facing step flow,” *J. Fluid Mech.*, vol. 127, pp. 473–496, Feb. 1983, doi: 10.1017/S0022112083002839.
374+
.. [#armaly1983] \B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schönung, “Experimental and theoretical investigation of backward-facing step flow,” *J. Fluid Mech.*, vol. 127, pp. 473–496, Feb. 1983, doi: `10.1017/S0022112083002839 <https://doi.org/10.1017/S0022112083002839>`_\.
375375
376-
`[3] <https://doi.org/10.1016/j.advengsoft.2014.11.006>`_ A. C. Velivelli and K. M. Bryden, “Domain decomposition based coupling between the lattice Boltzmann method and traditional CFD methods – Part II: Numerical solution to the backward facing step flow,” *Adv. Eng. Softw.*, vol. 82, pp. 65–74, Apr. 2015, doi: 10.1016/j.advengsoft.2014.11.006.
376+
.. [#velivelli2015] \A. C. Velivelli and K. M. Bryden, “Domain decomposition based coupling between the lattice Boltzmann method and traditional CFD methods – Part II: Numerical solution to the backward facing step flow,” *Adv. Eng. Softw.*, vol. 82, pp. 65–74, Apr. 2015, doi: `10.1016/j.advengsoft.2014.11.006 <https://doi.org/10.1016/j.advengsoft.2014.11.006>`_\.
377377
378378
379379

doc/source/examples/incompressible-flow/2d-flow-around-cylinder/2d-flow-around-cylinder.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ All files mentioned below are located in the example's folder (``examples/incomp
3131
-----------------------
3232
Description of the Case
3333
-----------------------
34-
We simulate the flow around a fixed cylinder with a constant upstream fluid velocity. The following schematic describes the geometry with its relevant quantities (taken from the article by Blais *et al.* `[1] <https://doi.org/10.1016/j.compchemeng.2015.10.019>`_):
34+
We simulate the flow around a fixed cylinder with a constant upstream fluid velocity. The following schematic describes the geometry with its relevant quantities (taken from the article by Blais *et al.* [#blais2016]_):
3535

3636
.. image:: images/geometry-description.png
3737
:alt: The geometry
@@ -283,4 +283,4 @@ Possibilities for Extension
283283
Reference
284284
----------
285285

286-
`[1] <https://doi.org/10.1016/j.compchemeng.2015.10.019>`_ B. Blais, M. Lassaigne, C. Goniva, L. Fradette, and F. Bertrand, “A semi-implicit immersed boundary method and its application to viscous mixing,” *Comput. Chem. Eng.*, vol. 85, pp. 136–146, Feb. 2016, doi: 10.1016/j.compchemeng.2015.10.019.
286+
.. [#blais2016] \B. Blais, M. Lassaigne, C. Goniva, L. Fradette, and F. Bertrand, “A semi-implicit immersed boundary method and its application to viscous mixing,” *Comput. Chem. Eng.*, vol. 85, pp. 136–146, Feb. 2016, doi: `10.1016/j.compchemeng.2015.10.019 <https://doi.org/10.1016/j.compchemeng.2015.10.019>`_\.

0 commit comments

Comments
 (0)